
If $A+B+C=\pi $ , prove that $\sin 2A-\sin 2B+\sin 2C=4\cos A\sin B\cos C$.
Answer
595.8k+ views
Hint: For solving this question we will use some trigonometric formula like formula for $\sin C-\sin D$ and $\sin \left( \pi -\theta \right)$ for simplifying the term written on the left-hand side. After that, we will prove it equal to the term on the right-hand side.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
$\sin 2A-\sin 2B+\sin 2C=4\cos A\sin B\cos C$
Now, before we proceed we should know the following four formulas:
$\begin{align}
& \sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)..................\left( 1 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \sin \left( A+B \right)=\sin \left( \pi -C \right)=\sin C..................................\left( 2 \right) \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C..............................\left( 3 \right) \\
& \sin 2\theta =2\sin \theta \cos \theta ..................................................\left( 4 \right) \\
\end{align}$
Now, we will be using the above four formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to $\sin 2A-\sin 2B+\sin 2C$ so, using the formula from equation (1).
Then,
$\begin{align}
& \sin 2A-\sin 2B+\sin 2C \\
& \Rightarrow 2\cos \left( \dfrac{2A+2B}{2} \right)\sin \left( \dfrac{2A-2B}{2} \right)+\sin 2C
\\
& \Rightarrow 2\cos \left( A+B \right)\sin \left( A-B \right)+\sin 2C \\
\end{align}$
Now, using the formula from equation (3) and equation (4) in the above equation. Then,
$\begin{align}
& 2\cos \left( A+B \right)\sin \left( A-B \right)+\sin 2C \\
& \Rightarrow -2\cos C\sin \left( A-B \right)+2\sin C\cos C \\
& \Rightarrow 2\cos C\left( \sin C-\sin \left( A-B \right) \right) \\
\end{align}$
Now, using the formula from equation (2) and equation (1) in the above equation. Then,
$\begin{align}
& 2\cos C\left( \sin C-\sin \left( A-B \right) \right) \\
& \Rightarrow 2\cos C\left( \sin \left( A+B \right)-\sin \left( A-B \right) \right) \\
& \Rightarrow 2\cos C\left( 2\cos \left( \dfrac{A+B+A-B}{2} \right)\sin \left(
\dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow 2\cos C\left( 2\cos A\sin B \right) \\
& \Rightarrow 4\cos A\sin B\cos C \\
\end{align}$
Now, from the above result, we can say that $\sin 2A-\sin 2B+\sin 2C=4\cos A\sin B\cos C$
Thus, $L.H.S=R.H.S$ .
Hence, proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. We should also try to make use of trigonometric results like $\sin \left( \pi -\theta \right)=\sin \theta $ for making equations that will help us further in the solution. Moreover, the formula $\sin C-\sin D$ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
$\sin 2A-\sin 2B+\sin 2C=4\cos A\sin B\cos C$
Now, before we proceed we should know the following four formulas:
$\begin{align}
& \sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)..................\left( 1 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \sin \left( A+B \right)=\sin \left( \pi -C \right)=\sin C..................................\left( 2 \right) \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C..............................\left( 3 \right) \\
& \sin 2\theta =2\sin \theta \cos \theta ..................................................\left( 4 \right) \\
\end{align}$
Now, we will be using the above four formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to $\sin 2A-\sin 2B+\sin 2C$ so, using the formula from equation (1).
Then,
$\begin{align}
& \sin 2A-\sin 2B+\sin 2C \\
& \Rightarrow 2\cos \left( \dfrac{2A+2B}{2} \right)\sin \left( \dfrac{2A-2B}{2} \right)+\sin 2C
\\
& \Rightarrow 2\cos \left( A+B \right)\sin \left( A-B \right)+\sin 2C \\
\end{align}$
Now, using the formula from equation (3) and equation (4) in the above equation. Then,
$\begin{align}
& 2\cos \left( A+B \right)\sin \left( A-B \right)+\sin 2C \\
& \Rightarrow -2\cos C\sin \left( A-B \right)+2\sin C\cos C \\
& \Rightarrow 2\cos C\left( \sin C-\sin \left( A-B \right) \right) \\
\end{align}$
Now, using the formula from equation (2) and equation (1) in the above equation. Then,
$\begin{align}
& 2\cos C\left( \sin C-\sin \left( A-B \right) \right) \\
& \Rightarrow 2\cos C\left( \sin \left( A+B \right)-\sin \left( A-B \right) \right) \\
& \Rightarrow 2\cos C\left( 2\cos \left( \dfrac{A+B+A-B}{2} \right)\sin \left(
\dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow 2\cos C\left( 2\cos A\sin B \right) \\
& \Rightarrow 4\cos A\sin B\cos C \\
\end{align}$
Now, from the above result, we can say that $\sin 2A-\sin 2B+\sin 2C=4\cos A\sin B\cos C$
Thus, $L.H.S=R.H.S$ .
Hence, proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. We should also try to make use of trigonometric results like $\sin \left( \pi -\theta \right)=\sin \theta $ for making equations that will help us further in the solution. Moreover, the formula $\sin C-\sin D$ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

