
If $A+B+C=\pi $, prove that ${{\sin }^{2}}A+{{\sin }^{2}}B+{{\sin }^{2}}C=2\left( 1+\cos A\cos B\cos C \right)$.
Answer
614.1k+ views
Hint: For solving this question as there are squares of trigonometric ratios so, we will trigonometric formulas like formula for $\cos 2\theta $ and then further for simplifying the term written on the left-hand side we will use formulas for $\cos C+\cos D$ and $\cos \left( \pi -\theta \right)$. After that, we will prove the term on the left-hand side is equal to the term on the right-hand side.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
${{\sin }^{2}}A+{{\sin }^{2}}B+{{\sin }^{2}}C=2\left( 1+\cos A\cos B\cos C \right)$
Now, before we proceed we should know the following four formulas:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1..............................\left( 1 \right) \\
& \cos 2\theta =1-2{{\sin }^{2}}\theta \\
& \Rightarrow 2{{\sin }^{2}}\theta =1-\cos 2\theta \\
& \Rightarrow {{\sin }^{2}}\theta =\dfrac{1-\cos 2\theta }{2}.........................\left( 2 \right) \\
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2}
\right)...........\left( 3 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C......................\left( 4 \right) \\
\end{align}$
Now, we will be using the above three formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to ${{\sin }^{2}}A+{{\sin }^{2}}B+{{\sin }^{2}}C$ so, using the formula from equation (1) and equation (2). Then,
$\begin{align}
& {{\sin }^{2}}A+{{\sin }^{2}}B+{{\sin }^{2}}C \\
& \Rightarrow \dfrac{1-\cos 2A}{2}+\dfrac{1-\cos 2B}{2}+1-{{\cos }^{2}}C \\
& \Rightarrow \dfrac{1}{2}+\dfrac{1}{2}+1-\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
& \Rightarrow 2-\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
\end{align}$
Now, using the formula from equation (3) in the above equation. Then,
$\begin{align}
& 2-\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
& \Rightarrow 2-\dfrac{1}{2}\left( 2\cos \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right) \right)-{{\cos }^{2}}C \\
& \Rightarrow 2-\cos \left( A+B \right)\cos \left( A-B \right)-{{\cos }^{2}}C \\
\end{align}$
Now, using the formula from the equation (4) in the above equation. Then,
$\begin{align}
& 2-\cos \left( A+B \right)\cos \left( A-B \right)-{{\cos }^{2}}C \\
& \Rightarrow 2+\cos C\cos \left( A-B \right)-{{\cos }^{2}}C \\
& \Rightarrow 2+\cos C\left( -\cos C+\cos \left( A-B \right) \right) \\
& \Rightarrow 2+\cos C\left( \cos \left( A+B \right)+\cos \left( A-B \right) \right) \\
\end{align}$
Now, using the formula from the equation (3) in the above equation. Then,
$\begin{align}
& 2+\cos C\left( \cos \left( A+B \right)+\cos \left( A-B \right) \right) \\
& \Rightarrow 2+\cos C\left( 2\cos \left( \dfrac{A+B+A-B}{2} \right)\cos \left( \dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow 2+\cos C\left( 2\cos A\cos B \right) \\
& \Rightarrow 2+2\cos A\cos B\cos C \\
& \Rightarrow 2\left( 1+\cos A\cos B\cos C \right) \\
\end{align}$
Now, from the above result, we can say that ${{\sin }^{2}}A+{{\sin }^{2}}B+{{\sin }^{2}}C=2\left( 1+\cos A\cos B\cos C \right)$.
Thus, $L.H.S=R.H.S$.
Hence Proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification process smooth, we should also try to make use of trigonometric results like $\cos \left( \pi -\theta \right)=-\cos \theta $ for making equations that will help us further in the solution. Moreover, the formulas like $\cos C+\cos D$ and $\cos 2\theta $ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
${{\sin }^{2}}A+{{\sin }^{2}}B+{{\sin }^{2}}C=2\left( 1+\cos A\cos B\cos C \right)$
Now, before we proceed we should know the following four formulas:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1..............................\left( 1 \right) \\
& \cos 2\theta =1-2{{\sin }^{2}}\theta \\
& \Rightarrow 2{{\sin }^{2}}\theta =1-\cos 2\theta \\
& \Rightarrow {{\sin }^{2}}\theta =\dfrac{1-\cos 2\theta }{2}.........................\left( 2 \right) \\
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2}
\right)...........\left( 3 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C......................\left( 4 \right) \\
\end{align}$
Now, we will be using the above three formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to ${{\sin }^{2}}A+{{\sin }^{2}}B+{{\sin }^{2}}C$ so, using the formula from equation (1) and equation (2). Then,
$\begin{align}
& {{\sin }^{2}}A+{{\sin }^{2}}B+{{\sin }^{2}}C \\
& \Rightarrow \dfrac{1-\cos 2A}{2}+\dfrac{1-\cos 2B}{2}+1-{{\cos }^{2}}C \\
& \Rightarrow \dfrac{1}{2}+\dfrac{1}{2}+1-\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
& \Rightarrow 2-\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
\end{align}$
Now, using the formula from equation (3) in the above equation. Then,
$\begin{align}
& 2-\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
& \Rightarrow 2-\dfrac{1}{2}\left( 2\cos \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right) \right)-{{\cos }^{2}}C \\
& \Rightarrow 2-\cos \left( A+B \right)\cos \left( A-B \right)-{{\cos }^{2}}C \\
\end{align}$
Now, using the formula from the equation (4) in the above equation. Then,
$\begin{align}
& 2-\cos \left( A+B \right)\cos \left( A-B \right)-{{\cos }^{2}}C \\
& \Rightarrow 2+\cos C\cos \left( A-B \right)-{{\cos }^{2}}C \\
& \Rightarrow 2+\cos C\left( -\cos C+\cos \left( A-B \right) \right) \\
& \Rightarrow 2+\cos C\left( \cos \left( A+B \right)+\cos \left( A-B \right) \right) \\
\end{align}$
Now, using the formula from the equation (3) in the above equation. Then,
$\begin{align}
& 2+\cos C\left( \cos \left( A+B \right)+\cos \left( A-B \right) \right) \\
& \Rightarrow 2+\cos C\left( 2\cos \left( \dfrac{A+B+A-B}{2} \right)\cos \left( \dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow 2+\cos C\left( 2\cos A\cos B \right) \\
& \Rightarrow 2+2\cos A\cos B\cos C \\
& \Rightarrow 2\left( 1+\cos A\cos B\cos C \right) \\
\end{align}$
Now, from the above result, we can say that ${{\sin }^{2}}A+{{\sin }^{2}}B+{{\sin }^{2}}C=2\left( 1+\cos A\cos B\cos C \right)$.
Thus, $L.H.S=R.H.S$.
Hence Proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification process smooth, we should also try to make use of trigonometric results like $\cos \left( \pi -\theta \right)=-\cos \theta $ for making equations that will help us further in the solution. Moreover, the formulas like $\cos C+\cos D$ and $\cos 2\theta $ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

