
If $A+B+C=\pi $, prove that $\cos 2A+\cos 2B-\cos 2C=1-4\sin A\sin B\cos C$.
Answer
602.4k+ views
Hint: For solving this question we will use some trigonometric formula like formula for $\cos C+\cos D$, $\cos C-\cos D$ and $\cos 2\theta $ for simplifying the term written on the left-hand side. After that, we will prove it equal to the term on the right-hand side.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
$\cos 2A+\cos 2B-\cos 2C=1-4\sin A\sin B\cos C$
Now, before we proceed we should know the following four formulas:
$\begin{align}
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)....................\left( 1 \right) \\
& \cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)...................\left( 2 \right) \\
& \cos 2\theta =2{{\cos }^{2}}\theta -1.........................................................\left( 3 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C..............................\left( 4 \right) \\
\end{align}$
Now, we will be using the above four formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to $\cos 2A+\cos 2B-\cos 2C$ so, using the formula from equation (1).
Then,
$\begin{align}
& \cos 2A+\cos 2B-\cos 2C \\
& \Rightarrow 2\cos \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right)-\cos 2C \\
& \Rightarrow 2\cos \left( A+B \right)\cos \left( A-B \right)-\cos 2C \\
\end{align}$
Now, using the formula from equation (3) and equation (4) in the above equation. Then,
$\begin{align}
& 2\cos \left( A+B \right)\cos \left( A-B \right)-\cos 2C \\
& \Rightarrow -2\cos C\cos \left( A-B \right)-\left( 2{{\cos }^{2}}C-1 \right) \\
& \Rightarrow -2\cos C\cos \left( A-B \right)-2{{\cos }^{2}}C+1 \\
\end{align}$
$\begin{align}
& \Rightarrow 1+2\cos C\left( -\cos \left( A-B \right)-\cos C \right) \\
& \Rightarrow 1+2\cos C\left( \cos \left( A+B \right)-\cos \left( A-B \right) \right) \\
\end{align}$
Now, using the formula from the equation (2) in the above equation. Then,
$\begin{align}
& 1+2\cos C\left( \cos \left( A+B \right)-\cos \left( A-B \right) \right) \\
& \Rightarrow 1+2\cos C\left( -2\sin \left( \dfrac{A+B+A-B}{2} \right)\sin \left( \dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow 1+2\cos C\left( -2\sin A\sin B \right) \\
& \Rightarrow 1-4\sin A\sin B\cos C \\
\end{align}$
Now, from the above result, we can say that $\cos 2A+\cos 2B-\cos 2C=1-4\sin A\sin B\cos C$.
Thus, $L.H.S=R.H.S$
Hence Proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification easier, we should also try to make use of trigonometric results like $\cos \left( \pi -\theta \right)=-\cos \theta $ for making equations that will help us further in the solution. Moreover, the formulas like $\cos C+\cos D$ , $\cos C-\cos D$ and $\cos 2\theta $ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Complete step-by-step answer:
Given:
It is given that if $A+B+C=\pi $ and we have to prove the following equation:
$\cos 2A+\cos 2B-\cos 2C=1-4\sin A\sin B\cos C$
Now, before we proceed we should know the following four formulas:
$\begin{align}
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)....................\left( 1 \right) \\
& \cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)...................\left( 2 \right) \\
& \cos 2\theta =2{{\cos }^{2}}\theta -1.........................................................\left( 3 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C..............................\left( 4 \right) \\
\end{align}$
Now, we will be using the above four formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to $\cos 2A+\cos 2B-\cos 2C$ so, using the formula from equation (1).
Then,
$\begin{align}
& \cos 2A+\cos 2B-\cos 2C \\
& \Rightarrow 2\cos \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right)-\cos 2C \\
& \Rightarrow 2\cos \left( A+B \right)\cos \left( A-B \right)-\cos 2C \\
\end{align}$
Now, using the formula from equation (3) and equation (4) in the above equation. Then,
$\begin{align}
& 2\cos \left( A+B \right)\cos \left( A-B \right)-\cos 2C \\
& \Rightarrow -2\cos C\cos \left( A-B \right)-\left( 2{{\cos }^{2}}C-1 \right) \\
& \Rightarrow -2\cos C\cos \left( A-B \right)-2{{\cos }^{2}}C+1 \\
\end{align}$
$\begin{align}
& \Rightarrow 1+2\cos C\left( -\cos \left( A-B \right)-\cos C \right) \\
& \Rightarrow 1+2\cos C\left( \cos \left( A+B \right)-\cos \left( A-B \right) \right) \\
\end{align}$
Now, using the formula from the equation (2) in the above equation. Then,
$\begin{align}
& 1+2\cos C\left( \cos \left( A+B \right)-\cos \left( A-B \right) \right) \\
& \Rightarrow 1+2\cos C\left( -2\sin \left( \dfrac{A+B+A-B}{2} \right)\sin \left( \dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow 1+2\cos C\left( -2\sin A\sin B \right) \\
& \Rightarrow 1-4\sin A\sin B\cos C \\
\end{align}$
Now, from the above result, we can say that $\cos 2A+\cos 2B-\cos 2C=1-4\sin A\sin B\cos C$.
Thus, $L.H.S=R.H.S$
Hence Proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification easier, we should also try to make use of trigonometric results like $\cos \left( \pi -\theta \right)=-\cos \theta $ for making equations that will help us further in the solution. Moreover, the formulas like $\cos C+\cos D$ , $\cos C-\cos D$ and $\cos 2\theta $ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

What is the missing number in the sequence 259142027 class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

On the outline map of India mark the following appropriately class 10 social science. CBSE

Why does India have a monsoon type of climate class 10 social science CBSE

