
If $A+B+C={{180}^{\circ }}$, then the value of \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\]will be
a) $\sec \text{A}\sec \text{B}\sec \text{C}$
b) $\text{cosecA cosecB cosecC}$
c) $\tan \text{A}\tan \text{B}\tan \text{C}$
c) 1
Answer
590.4k+ views
Hint: Since we are given that: $A+B+C={{180}^{\circ }}$. We can write, $A+B={{180}^{\circ }}-C$. Apply sine on both sides of the equation, we get:
$\begin{align}
& \sin \left( A+B \right)=\sin \left( {{180}^{\circ }}-C \right) \\
& \sin \left( A+B \right)=\sin C \\
\end{align}$
Since we need to find the values of cotangent of given angles, we can find value of cosine and sine of given angles and divide them.
Therefore, we can write:
$\cot A=\dfrac{\cos A}{\sin A};\cot B=\dfrac{\cos B}{\sin B};\cot C=\dfrac{\cos C}{\sin C}$
Substitute the values in the expression \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\] and solve the equation to get the value.
Complete step by step answer:
We have the following expression to solve: \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\]
Let us solve for $\left( \cot A+\cot B \right)$first.
We can write this expression as:
$\begin{align}
& \left( \cot A+\cot B \right)=\left( \dfrac{\cos A}{\sin A}+\dfrac{\cos B}{\sin B} \right) \\
& =\dfrac{\cos A\sin B+\cos B\sin A}{\sin A\sin B}......(1)
\end{align}$
Similarly, for $\left( \cot B+\cot C \right)$
$\begin{align}
& \left( \cot B+\cot C \right)=\left( \dfrac{\cos B}{\sin B}+\dfrac{\cos C}{\sin C} \right) \\
& =\dfrac{\cos B\sin C+\cos C\sin B}{\sin B\sin C}......(2)
\end{align}$
And for $\left( \cot A+\cot C \right)$
$\begin{align}
& \left( \cot A+\cot C \right)=\left( \dfrac{\cos A}{\sin A}+\dfrac{\cos C}{\sin C} \right) \\
& =\dfrac{\cos A\sin C+\cos C\sin A}{\sin A\sin C}......(3)
\end{align}$
By applying identity: \[\left( \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \right)\] in equation (1), we can write:
\[\left( \cot A+\cot B \right)=\dfrac{\sin \left( A+B \right)}{\sin A\sin B}......(4)\]
Similarly, applying the sine-addition identity in equation (2) and (3), we get:
\[\left( \cot B+\cot C \right)=\dfrac{\sin \left( B+C \right)}{\sin B\sin C}......(5)\]
\[\left( \cot A+\cot C \right)=\dfrac{\sin \left( A+C \right)}{\sin A\sin C}......(6)\]
Since we are given that: $A+B+C={{180}^{\circ }}$. We can write, $A+B={{180}^{\circ }}-C$.
Apply sine on both sides of the equation, we get:
$\begin{align}
& \sin \left( A+B \right)=\sin \left( {{180}^{\circ }}-C \right) \\
& \sin \left( A+B \right)=\sin C \\
\end{align}$
$\left[ \because \sin \left( {{180}^{\circ }}-\theta \right)=\sin \theta \right]$
Substitute the value of $\sin \left( A+B \right)$ in equation (4), we get:
\[\left( \cot A+\cot B \right)=\dfrac{\sin C}{\sin A\sin B}......(7)\]
Similarly,
\[\begin{align}
& \left( \cot B+\cot C \right)=\dfrac{\sin A}{\sin B\sin C}......(8) \\
& \left( \cot A+\cot C \right)=\dfrac{\sin B}{\sin A\sin C}......(9) \\
\end{align}\]
Now, multiply equation (7), (8) and (9), we get:
\[\]\[\begin{align}
& \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\
& =\dfrac{\sin A}{\sin B\sin C}\times \dfrac{\sin B}{\sin A\sin C}\times \dfrac{\sin C}{\sin A\sin B} \\
& =\dfrac{1}{\sin A\sin B\sin C}......(10) \\
\end{align}\]
Since, \[\dfrac{1}{\sin \theta }=\text{cosec }\theta \]
So, we can write equation (10) as:
\[\begin{align}
& \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\
& =\cos \text{ec}A\cos \text{ec}B\cos \text{ec}C \\
\end{align}\]
So, the correct answer is “Option B”.
Note: There is another method to solve the expression. We can assume that A = B = C. So, we get the value of A, B and C = \[{{60}^{\circ }}\]. Put the values of cotangent of \[{{60}^{\circ }}\]and solve the expression. For the given expression: \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\], for \[\cot {{60}^{\circ }}=\dfrac{1}{\sqrt{3}}\], we can write:
\[\]\[\begin{align}
& \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\
& =\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right)\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right)\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right) \\
& =\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right)\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right)\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right) \\
& =\dfrac{\left( 2\sqrt{3} \right)\left( 2\sqrt{3} \right)\left( 2\sqrt{3} \right)}{3\sqrt{3}} \\
& =8 \\
\end{align}\]
Now, go for the given options. Check if any option satisfies with the given angle.
$\begin{align}
& \sin \left( A+B \right)=\sin \left( {{180}^{\circ }}-C \right) \\
& \sin \left( A+B \right)=\sin C \\
\end{align}$
Since we need to find the values of cotangent of given angles, we can find value of cosine and sine of given angles and divide them.
Therefore, we can write:
$\cot A=\dfrac{\cos A}{\sin A};\cot B=\dfrac{\cos B}{\sin B};\cot C=\dfrac{\cos C}{\sin C}$
Substitute the values in the expression \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\] and solve the equation to get the value.
Complete step by step answer:
We have the following expression to solve: \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\]
Let us solve for $\left( \cot A+\cot B \right)$first.
We can write this expression as:
$\begin{align}
& \left( \cot A+\cot B \right)=\left( \dfrac{\cos A}{\sin A}+\dfrac{\cos B}{\sin B} \right) \\
& =\dfrac{\cos A\sin B+\cos B\sin A}{\sin A\sin B}......(1)
\end{align}$
Similarly, for $\left( \cot B+\cot C \right)$
$\begin{align}
& \left( \cot B+\cot C \right)=\left( \dfrac{\cos B}{\sin B}+\dfrac{\cos C}{\sin C} \right) \\
& =\dfrac{\cos B\sin C+\cos C\sin B}{\sin B\sin C}......(2)
\end{align}$
And for $\left( \cot A+\cot C \right)$
$\begin{align}
& \left( \cot A+\cot C \right)=\left( \dfrac{\cos A}{\sin A}+\dfrac{\cos C}{\sin C} \right) \\
& =\dfrac{\cos A\sin C+\cos C\sin A}{\sin A\sin C}......(3)
\end{align}$
By applying identity: \[\left( \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \right)\] in equation (1), we can write:
\[\left( \cot A+\cot B \right)=\dfrac{\sin \left( A+B \right)}{\sin A\sin B}......(4)\]
Similarly, applying the sine-addition identity in equation (2) and (3), we get:
\[\left( \cot B+\cot C \right)=\dfrac{\sin \left( B+C \right)}{\sin B\sin C}......(5)\]
\[\left( \cot A+\cot C \right)=\dfrac{\sin \left( A+C \right)}{\sin A\sin C}......(6)\]
Since we are given that: $A+B+C={{180}^{\circ }}$. We can write, $A+B={{180}^{\circ }}-C$.
Apply sine on both sides of the equation, we get:
$\begin{align}
& \sin \left( A+B \right)=\sin \left( {{180}^{\circ }}-C \right) \\
& \sin \left( A+B \right)=\sin C \\
\end{align}$
$\left[ \because \sin \left( {{180}^{\circ }}-\theta \right)=\sin \theta \right]$
Substitute the value of $\sin \left( A+B \right)$ in equation (4), we get:
\[\left( \cot A+\cot B \right)=\dfrac{\sin C}{\sin A\sin B}......(7)\]
Similarly,
\[\begin{align}
& \left( \cot B+\cot C \right)=\dfrac{\sin A}{\sin B\sin C}......(8) \\
& \left( \cot A+\cot C \right)=\dfrac{\sin B}{\sin A\sin C}......(9) \\
\end{align}\]
Now, multiply equation (7), (8) and (9), we get:
\[\]\[\begin{align}
& \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\
& =\dfrac{\sin A}{\sin B\sin C}\times \dfrac{\sin B}{\sin A\sin C}\times \dfrac{\sin C}{\sin A\sin B} \\
& =\dfrac{1}{\sin A\sin B\sin C}......(10) \\
\end{align}\]
Since, \[\dfrac{1}{\sin \theta }=\text{cosec }\theta \]
So, we can write equation (10) as:
\[\begin{align}
& \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\
& =\cos \text{ec}A\cos \text{ec}B\cos \text{ec}C \\
\end{align}\]
So, the correct answer is “Option B”.
Note: There is another method to solve the expression. We can assume that A = B = C. So, we get the value of A, B and C = \[{{60}^{\circ }}\]. Put the values of cotangent of \[{{60}^{\circ }}\]and solve the expression. For the given expression: \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\], for \[\cot {{60}^{\circ }}=\dfrac{1}{\sqrt{3}}\], we can write:
\[\]\[\begin{align}
& \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\
& =\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right)\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right)\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right) \\
& =\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right)\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right)\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right) \\
& =\dfrac{\left( 2\sqrt{3} \right)\left( 2\sqrt{3} \right)\left( 2\sqrt{3} \right)}{3\sqrt{3}} \\
& =8 \\
\end{align}\]
Now, go for the given options. Check if any option satisfies with the given angle.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

