
If $A+B+C={{180}^{\circ }}$, then the value of \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\]will be
a) $\sec \text{A}\sec \text{B}\sec \text{C}$
b) $\text{cosecA cosecB cosecC}$
c) $\tan \text{A}\tan \text{B}\tan \text{C}$
c) 1
Answer
575.4k+ views
Hint: Since we are given that: $A+B+C={{180}^{\circ }}$. We can write, $A+B={{180}^{\circ }}-C$. Apply sine on both sides of the equation, we get:
$\begin{align}
& \sin \left( A+B \right)=\sin \left( {{180}^{\circ }}-C \right) \\
& \sin \left( A+B \right)=\sin C \\
\end{align}$
Since we need to find the values of cotangent of given angles, we can find value of cosine and sine of given angles and divide them.
Therefore, we can write:
$\cot A=\dfrac{\cos A}{\sin A};\cot B=\dfrac{\cos B}{\sin B};\cot C=\dfrac{\cos C}{\sin C}$
Substitute the values in the expression \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\] and solve the equation to get the value.
Complete step by step answer:
We have the following expression to solve: \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\]
Let us solve for $\left( \cot A+\cot B \right)$first.
We can write this expression as:
$\begin{align}
& \left( \cot A+\cot B \right)=\left( \dfrac{\cos A}{\sin A}+\dfrac{\cos B}{\sin B} \right) \\
& =\dfrac{\cos A\sin B+\cos B\sin A}{\sin A\sin B}......(1)
\end{align}$
Similarly, for $\left( \cot B+\cot C \right)$
$\begin{align}
& \left( \cot B+\cot C \right)=\left( \dfrac{\cos B}{\sin B}+\dfrac{\cos C}{\sin C} \right) \\
& =\dfrac{\cos B\sin C+\cos C\sin B}{\sin B\sin C}......(2)
\end{align}$
And for $\left( \cot A+\cot C \right)$
$\begin{align}
& \left( \cot A+\cot C \right)=\left( \dfrac{\cos A}{\sin A}+\dfrac{\cos C}{\sin C} \right) \\
& =\dfrac{\cos A\sin C+\cos C\sin A}{\sin A\sin C}......(3)
\end{align}$
By applying identity: \[\left( \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \right)\] in equation (1), we can write:
\[\left( \cot A+\cot B \right)=\dfrac{\sin \left( A+B \right)}{\sin A\sin B}......(4)\]
Similarly, applying the sine-addition identity in equation (2) and (3), we get:
\[\left( \cot B+\cot C \right)=\dfrac{\sin \left( B+C \right)}{\sin B\sin C}......(5)\]
\[\left( \cot A+\cot C \right)=\dfrac{\sin \left( A+C \right)}{\sin A\sin C}......(6)\]
Since we are given that: $A+B+C={{180}^{\circ }}$. We can write, $A+B={{180}^{\circ }}-C$.
Apply sine on both sides of the equation, we get:
$\begin{align}
& \sin \left( A+B \right)=\sin \left( {{180}^{\circ }}-C \right) \\
& \sin \left( A+B \right)=\sin C \\
\end{align}$
$\left[ \because \sin \left( {{180}^{\circ }}-\theta \right)=\sin \theta \right]$
Substitute the value of $\sin \left( A+B \right)$ in equation (4), we get:
\[\left( \cot A+\cot B \right)=\dfrac{\sin C}{\sin A\sin B}......(7)\]
Similarly,
\[\begin{align}
& \left( \cot B+\cot C \right)=\dfrac{\sin A}{\sin B\sin C}......(8) \\
& \left( \cot A+\cot C \right)=\dfrac{\sin B}{\sin A\sin C}......(9) \\
\end{align}\]
Now, multiply equation (7), (8) and (9), we get:
\[\]\[\begin{align}
& \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\
& =\dfrac{\sin A}{\sin B\sin C}\times \dfrac{\sin B}{\sin A\sin C}\times \dfrac{\sin C}{\sin A\sin B} \\
& =\dfrac{1}{\sin A\sin B\sin C}......(10) \\
\end{align}\]
Since, \[\dfrac{1}{\sin \theta }=\text{cosec }\theta \]
So, we can write equation (10) as:
\[\begin{align}
& \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\
& =\cos \text{ec}A\cos \text{ec}B\cos \text{ec}C \\
\end{align}\]
So, the correct answer is “Option B”.
Note: There is another method to solve the expression. We can assume that A = B = C. So, we get the value of A, B and C = \[{{60}^{\circ }}\]. Put the values of cotangent of \[{{60}^{\circ }}\]and solve the expression. For the given expression: \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\], for \[\cot {{60}^{\circ }}=\dfrac{1}{\sqrt{3}}\], we can write:
\[\]\[\begin{align}
& \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\
& =\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right)\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right)\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right) \\
& =\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right)\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right)\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right) \\
& =\dfrac{\left( 2\sqrt{3} \right)\left( 2\sqrt{3} \right)\left( 2\sqrt{3} \right)}{3\sqrt{3}} \\
& =8 \\
\end{align}\]
Now, go for the given options. Check if any option satisfies with the given angle.
$\begin{align}
& \sin \left( A+B \right)=\sin \left( {{180}^{\circ }}-C \right) \\
& \sin \left( A+B \right)=\sin C \\
\end{align}$
Since we need to find the values of cotangent of given angles, we can find value of cosine and sine of given angles and divide them.
Therefore, we can write:
$\cot A=\dfrac{\cos A}{\sin A};\cot B=\dfrac{\cos B}{\sin B};\cot C=\dfrac{\cos C}{\sin C}$
Substitute the values in the expression \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\] and solve the equation to get the value.
Complete step by step answer:
We have the following expression to solve: \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\]
Let us solve for $\left( \cot A+\cot B \right)$first.
We can write this expression as:
$\begin{align}
& \left( \cot A+\cot B \right)=\left( \dfrac{\cos A}{\sin A}+\dfrac{\cos B}{\sin B} \right) \\
& =\dfrac{\cos A\sin B+\cos B\sin A}{\sin A\sin B}......(1)
\end{align}$
Similarly, for $\left( \cot B+\cot C \right)$
$\begin{align}
& \left( \cot B+\cot C \right)=\left( \dfrac{\cos B}{\sin B}+\dfrac{\cos C}{\sin C} \right) \\
& =\dfrac{\cos B\sin C+\cos C\sin B}{\sin B\sin C}......(2)
\end{align}$
And for $\left( \cot A+\cot C \right)$
$\begin{align}
& \left( \cot A+\cot C \right)=\left( \dfrac{\cos A}{\sin A}+\dfrac{\cos C}{\sin C} \right) \\
& =\dfrac{\cos A\sin C+\cos C\sin A}{\sin A\sin C}......(3)
\end{align}$
By applying identity: \[\left( \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \right)\] in equation (1), we can write:
\[\left( \cot A+\cot B \right)=\dfrac{\sin \left( A+B \right)}{\sin A\sin B}......(4)\]
Similarly, applying the sine-addition identity in equation (2) and (3), we get:
\[\left( \cot B+\cot C \right)=\dfrac{\sin \left( B+C \right)}{\sin B\sin C}......(5)\]
\[\left( \cot A+\cot C \right)=\dfrac{\sin \left( A+C \right)}{\sin A\sin C}......(6)\]
Since we are given that: $A+B+C={{180}^{\circ }}$. We can write, $A+B={{180}^{\circ }}-C$.
Apply sine on both sides of the equation, we get:
$\begin{align}
& \sin \left( A+B \right)=\sin \left( {{180}^{\circ }}-C \right) \\
& \sin \left( A+B \right)=\sin C \\
\end{align}$
$\left[ \because \sin \left( {{180}^{\circ }}-\theta \right)=\sin \theta \right]$
Substitute the value of $\sin \left( A+B \right)$ in equation (4), we get:
\[\left( \cot A+\cot B \right)=\dfrac{\sin C}{\sin A\sin B}......(7)\]
Similarly,
\[\begin{align}
& \left( \cot B+\cot C \right)=\dfrac{\sin A}{\sin B\sin C}......(8) \\
& \left( \cot A+\cot C \right)=\dfrac{\sin B}{\sin A\sin C}......(9) \\
\end{align}\]
Now, multiply equation (7), (8) and (9), we get:
\[\]\[\begin{align}
& \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\
& =\dfrac{\sin A}{\sin B\sin C}\times \dfrac{\sin B}{\sin A\sin C}\times \dfrac{\sin C}{\sin A\sin B} \\
& =\dfrac{1}{\sin A\sin B\sin C}......(10) \\
\end{align}\]
Since, \[\dfrac{1}{\sin \theta }=\text{cosec }\theta \]
So, we can write equation (10) as:
\[\begin{align}
& \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\
& =\cos \text{ec}A\cos \text{ec}B\cos \text{ec}C \\
\end{align}\]
So, the correct answer is “Option B”.
Note: There is another method to solve the expression. We can assume that A = B = C. So, we get the value of A, B and C = \[{{60}^{\circ }}\]. Put the values of cotangent of \[{{60}^{\circ }}\]and solve the expression. For the given expression: \[\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)\], for \[\cot {{60}^{\circ }}=\dfrac{1}{\sqrt{3}}\], we can write:
\[\]\[\begin{align}
& \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\
& =\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right)\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right)\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right) \\
& =\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right)\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right)\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right) \\
& =\dfrac{\left( 2\sqrt{3} \right)\left( 2\sqrt{3} \right)\left( 2\sqrt{3} \right)}{3\sqrt{3}} \\
& =8 \\
\end{align}\]
Now, go for the given options. Check if any option satisfies with the given angle.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

