
If $a+b+c=0$, then prove that \[\dfrac{{{\left( b+c \right)}^{2}}}{3bc}+\dfrac{{{\left( c+a \right)}^{2}}}{3ca}+\dfrac{{{\left( a+b \right)}^{2}}}{3ab}=1\]
Answer
611.7k+ views
Hint: Put $a+b=-c$
$b+c=-a$
$a+c=-b$, and then solve, and use the identity: “If $a+b+c=0$ then ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$” for further solving.
Complete step-by-step answer:
Given $a+b+c=0.........\left( 1 \right)$
To prove;
\[\dfrac{{{\left( b+c \right)}^{2}}}{3bc}+\dfrac{{{\left( c+a \right)}^{2}}}{3ca}+\dfrac{{{\left( a+b \right)}^{2}}}{3ab}=1.................\left( 2 \right)\]
From equation (1), we can write;
$\begin{align}
& b+c=-a..............\left( 3 \right) \\
& a+c=-b...............\left( 4 \right) \\
& a+b=-c...............\left( 5 \right) \\
\end{align}$
Using equation 3, 4 and 5 in equation (2), we will get;
$\begin{align}
& \dfrac{{{\left( -a \right)}^{2}}}{3bc}+\dfrac{{{\left( -b \right)}^{2}}}{3ca}+\dfrac{{{\left( -c \right)}^{2}}}{3ab}=1 \\
& \dfrac{{{a}^{2}}}{3bc}+\dfrac{{{b}^{2}}}{3ca}+\dfrac{{{c}^{2}}}{3ab}=1 \\
\end{align}$
Taking LCM and adding the three terms, equation will be;
$\dfrac{{{a}^{3}}+{{b}^{3}}+{{c}^{3}}}{3abc}=1................\left( 6 \right)$
We know the identity;
“If $a+b+c=0$ then ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$”
If you don’t know this identity, remember this identity is very useful and can be directly used in many questions.
Proof of this identity:
Given: $a+b+c=0$
$\begin{align}
& \Rightarrow a+b+c=0 \\
& \Rightarrow a+b=-c \\
\end{align}$
On cubing both sides;
$\Rightarrow {{\left( a+b \right)}^{3}}={{\left( -c \right)}^{3}}$
Identity: ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$
$\Rightarrow {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)=-{{c}^{3}}$
Using $a+b=-c$, equation will become;
$\begin{align}
& \Rightarrow {{a}^{3}}+{{b}^{3}}+3ab\left( -c \right)=-{{c}^{3}} \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}-3abc=-{{c}^{3}} \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc \\
\end{align}$
Using this identity in equation (6);
LHS of equation (6):
$\dfrac{{{a}^{3}}+{{b}^{3}}+{{c}^{3}}}{3abc}=\dfrac{3abc}{3abc}=1$
LHS = RHS = 1
Hence, it is proved that if $a+b+c=0$ then,
\[\dfrac{{{\left( b+c \right)}^{2}}}{3bc}+\dfrac{{{\left( c+a \right)}^{2}}}{3ca}+\dfrac{{{\left( a+b \right)}^{2}}}{3ab}=1\]
Note: Remember the identities used for solving this question.
1- ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$
2- If $a+b+c=0$then ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$
$b+c=-a$
$a+c=-b$, and then solve, and use the identity: “If $a+b+c=0$ then ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$” for further solving.
Complete step-by-step answer:
Given $a+b+c=0.........\left( 1 \right)$
To prove;
\[\dfrac{{{\left( b+c \right)}^{2}}}{3bc}+\dfrac{{{\left( c+a \right)}^{2}}}{3ca}+\dfrac{{{\left( a+b \right)}^{2}}}{3ab}=1.................\left( 2 \right)\]
From equation (1), we can write;
$\begin{align}
& b+c=-a..............\left( 3 \right) \\
& a+c=-b...............\left( 4 \right) \\
& a+b=-c...............\left( 5 \right) \\
\end{align}$
Using equation 3, 4 and 5 in equation (2), we will get;
$\begin{align}
& \dfrac{{{\left( -a \right)}^{2}}}{3bc}+\dfrac{{{\left( -b \right)}^{2}}}{3ca}+\dfrac{{{\left( -c \right)}^{2}}}{3ab}=1 \\
& \dfrac{{{a}^{2}}}{3bc}+\dfrac{{{b}^{2}}}{3ca}+\dfrac{{{c}^{2}}}{3ab}=1 \\
\end{align}$
Taking LCM and adding the three terms, equation will be;
$\dfrac{{{a}^{3}}+{{b}^{3}}+{{c}^{3}}}{3abc}=1................\left( 6 \right)$
We know the identity;
“If $a+b+c=0$ then ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$”
If you don’t know this identity, remember this identity is very useful and can be directly used in many questions.
Proof of this identity:
Given: $a+b+c=0$
$\begin{align}
& \Rightarrow a+b+c=0 \\
& \Rightarrow a+b=-c \\
\end{align}$
On cubing both sides;
$\Rightarrow {{\left( a+b \right)}^{3}}={{\left( -c \right)}^{3}}$
Identity: ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$
$\Rightarrow {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)=-{{c}^{3}}$
Using $a+b=-c$, equation will become;
$\begin{align}
& \Rightarrow {{a}^{3}}+{{b}^{3}}+3ab\left( -c \right)=-{{c}^{3}} \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}-3abc=-{{c}^{3}} \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc \\
\end{align}$
Using this identity in equation (6);
LHS of equation (6):
$\dfrac{{{a}^{3}}+{{b}^{3}}+{{c}^{3}}}{3abc}=\dfrac{3abc}{3abc}=1$
LHS = RHS = 1
Hence, it is proved that if $a+b+c=0$ then,
\[\dfrac{{{\left( b+c \right)}^{2}}}{3bc}+\dfrac{{{\left( c+a \right)}^{2}}}{3ca}+\dfrac{{{\left( a+b \right)}^{2}}}{3ab}=1\]
Note: Remember the identities used for solving this question.
1- ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$
2- If $a+b+c=0$then ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

