
If \[a+b+c+d=4\] then find the value of \[\dfrac{1}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)}+\dfrac{1}{\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)}+\dfrac{1}{\left( 1-c \right)\left( 1-d \right)\left( 1-a \right)}+\dfrac{1}{\left( 1-d \right)\left( 1-b \right)\left( 1-a \right)}\].
Answer
498k+ views
Hint: In this type of question we have to use the concept of LCM. In the given expression we observe the denominator of each term and then we multiply the numerator as well as the denominator of each of them by the bracket which is not present in the denominator. In this way we will get the same denominator for each term and then we can add the numerator. By simplifying the expression further we will reach the required value.
Complete step-by-step solution:
Now we have to find the value of \[\dfrac{1}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)}+\dfrac{1}{\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)}+\dfrac{1}{\left( 1-c \right)\left( 1-d \right)\left( 1-a \right)}+\dfrac{1}{\left( 1-d \right)\left( 1-b \right)\left( 1-a \right)}\] and we have provided that \[a+b+c+d=4\].
Let us consider the given expression,
\[\Rightarrow \dfrac{1}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)}+\dfrac{1}{\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)}+\dfrac{1}{\left( 1-c \right)\left( 1-d \right)\left( 1-a \right)}+\dfrac{1}{\left( 1-d \right)\left( 1-b \right)\left( 1-a \right)}\]
Here, we can observe that in first term \[\left( 1-d \right)\] is absent, in second term \[\left( 1-a \right)\], in third term \[\left( 1-b \right)\] and in fourth term \[\left( 1-c \right)\] are absent. So that we multiply each of the term by the corresponding terms respectively to obtain the same denominator which are as follows:
\[\begin{align}
& \Rightarrow \text{First Term =}\dfrac{\left( 1-d \right)}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)} \\
& \Rightarrow \text{Second Term =}\dfrac{\left( 1-a \right)}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)} \\
& \Rightarrow \text{Third Term =}\dfrac{\left( 1-b \right)}{\left( 1-c \right)\left( 1-d \right)\left( 1-a \right)\left( 1-b \right)} \\
& \Rightarrow \text{Fourth Term =}\dfrac{\left( 1-c \right)}{\left( 1-d \right)\left( 1-b \right)\left( 1-a \right)\left( 1-c \right)} \\
\end{align}\]
Hence, by adding all the terms we will get the above expression as,
\[\Rightarrow \dfrac{\left( 1-d \right)+\left( 1-a \right)+\left( 1-b \right)+\left( 1-c \right)}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)}\]
On simplification, we can write the above expression as
\[\begin{align}
& \Rightarrow \dfrac{\left( 1+1+1+1 \right)-d-a-b-c}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)} \\
& \Rightarrow \dfrac{4-\left( a+b+c+d \right)}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)} \\
\end{align}\]
But as we have given that the value of \[a+b+c+d=4\]
\[\Rightarrow \dfrac{4-4}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)}\]
\[\Rightarrow 0\]
Hence, the value of the expression is equal to \[0\]
Thus, if \[a+b+c+d=4\] then the value of \[\dfrac{1}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)}+\dfrac{1}{\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)}+\dfrac{1}{\left( 1-c \right)\left( 1-d \right)\left( 1-a \right)}+\dfrac{1}{\left( 1-d \right)\left( 1-b \right)\left( 1-a \right)}\] is equal to \[0\].
Note: In this type of question students have to note that by multiplication to the numerator as well as to the denominator by an absent term from the denominator they can obtain the same denominator for each of the terms. Also students have to remember that zero divided by anything always results in a zero.
Complete step-by-step solution:
Now we have to find the value of \[\dfrac{1}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)}+\dfrac{1}{\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)}+\dfrac{1}{\left( 1-c \right)\left( 1-d \right)\left( 1-a \right)}+\dfrac{1}{\left( 1-d \right)\left( 1-b \right)\left( 1-a \right)}\] and we have provided that \[a+b+c+d=4\].
Let us consider the given expression,
\[\Rightarrow \dfrac{1}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)}+\dfrac{1}{\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)}+\dfrac{1}{\left( 1-c \right)\left( 1-d \right)\left( 1-a \right)}+\dfrac{1}{\left( 1-d \right)\left( 1-b \right)\left( 1-a \right)}\]
Here, we can observe that in first term \[\left( 1-d \right)\] is absent, in second term \[\left( 1-a \right)\], in third term \[\left( 1-b \right)\] and in fourth term \[\left( 1-c \right)\] are absent. So that we multiply each of the term by the corresponding terms respectively to obtain the same denominator which are as follows:
\[\begin{align}
& \Rightarrow \text{First Term =}\dfrac{\left( 1-d \right)}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)} \\
& \Rightarrow \text{Second Term =}\dfrac{\left( 1-a \right)}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)} \\
& \Rightarrow \text{Third Term =}\dfrac{\left( 1-b \right)}{\left( 1-c \right)\left( 1-d \right)\left( 1-a \right)\left( 1-b \right)} \\
& \Rightarrow \text{Fourth Term =}\dfrac{\left( 1-c \right)}{\left( 1-d \right)\left( 1-b \right)\left( 1-a \right)\left( 1-c \right)} \\
\end{align}\]
Hence, by adding all the terms we will get the above expression as,
\[\Rightarrow \dfrac{\left( 1-d \right)+\left( 1-a \right)+\left( 1-b \right)+\left( 1-c \right)}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)}\]
On simplification, we can write the above expression as
\[\begin{align}
& \Rightarrow \dfrac{\left( 1+1+1+1 \right)-d-a-b-c}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)} \\
& \Rightarrow \dfrac{4-\left( a+b+c+d \right)}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)} \\
\end{align}\]
But as we have given that the value of \[a+b+c+d=4\]
\[\Rightarrow \dfrac{4-4}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)}\]
\[\Rightarrow 0\]
Hence, the value of the expression is equal to \[0\]
Thus, if \[a+b+c+d=4\] then the value of \[\dfrac{1}{\left( 1-a \right)\left( 1-b \right)\left( 1-c \right)}+\dfrac{1}{\left( 1-b \right)\left( 1-c \right)\left( 1-d \right)}+\dfrac{1}{\left( 1-c \right)\left( 1-d \right)\left( 1-a \right)}+\dfrac{1}{\left( 1-d \right)\left( 1-b \right)\left( 1-a \right)}\] is equal to \[0\].
Note: In this type of question students have to note that by multiplication to the numerator as well as to the denominator by an absent term from the denominator they can obtain the same denominator for each of the terms. Also students have to remember that zero divided by anything always results in a zero.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

