
If $33\dfrac{1}{3}\% \,of\,A = 1.5\,of\,B = \dfrac{1}{8}\,of\,C$, then $A:B:C$ is
A.$24 :2:9$
B.$2:9:24$
C.$9:2:24$
D.$9:24:2$
Answer
579.9k+ views
Hint: Convert all the values into fractions and find the ratios of $A:B$,$B:C$ and $C:A$, With the help of one ratio value try to compensate the other ratio of same value, do the same with the other ratios and we will be able to find the ratio of A:B:C
Complete step-by-step answer:
Given that $33\dfrac{1}{3}\% \,of\,A = 1.5\,of\,B = \dfrac{1}{8}\,of\,C$,
So,
$
\Rightarrow 33\dfrac{1}{3}\% \left( A \right) = \dfrac{{100}}{3}\% \left( A \right) = \dfrac{{100}}{3} \times \dfrac{1}{{100}}\left( A \right) = \dfrac{A}{3}........\left( 1 \right) \\
\Rightarrow 1.5\left( B \right) = \dfrac{{3B}}{2}........\left( 2 \right) \\
\Rightarrow \dfrac{1}{8}\left( C \right) = \dfrac{C}{8}..........\left( 3 \right) \\
$
Now with the help of (1) and (2)
$
\Rightarrow \dfrac{A}{3} = \dfrac{{3B}}{2} \\
\Rightarrow \dfrac{A}{B} = \dfrac{9}{2}........\left( 4 \right) \\
$
Now with the help of (2) and (3)
$
\Rightarrow \dfrac{{3B}}{2} = \dfrac{C}{8} \\
\Rightarrow \dfrac{B}{C} = \dfrac{1}{{12}}........\left( 5 \right) \\
$
Now with the help of (3) and (1)
$
\Rightarrow \dfrac{C}{8} = \dfrac{A}{3} \\
\Rightarrow \dfrac{A}{C} = \dfrac{3}{8}........\left( 6 \right) \\
$
Now with the help of (4) try to compensate the same value of A in (6)
We have, $\dfrac{A}{B} = \dfrac{9}{2}$and $\dfrac{A}{C} = \dfrac{3}{8}$, try to make the value of A same
$
\Rightarrow \dfrac{A}{C} = \dfrac{3}{8} \\
\Rightarrow d\dfrac{A}{C} = \dfrac{3}{8} \times \dfrac{3}{3} \\
\Rightarrow \dfrac{A}{C} = \dfrac{9}{{24}}.......\left( 7 \right) \\
$
Now we have $A = 9$
Now with the help of (7) try to compensate the same value of C and B in (5)
We have, $\dfrac{A}{C} = \dfrac{9}{{24}}$and $\dfrac{B}{C} = \dfrac{1}{{12}}$, try to make the value of C same
\[
\Rightarrow \dfrac{B}{C} = \dfrac{1}{{12}} \\
\Rightarrow \dfrac{B}{C} = \dfrac{1}{{12}} \times \dfrac{2}{2} \\
\Rightarrow \dfrac{B}{C} = \dfrac{2}{{24}}.........\left( 8 \right) \\
\]
From (7) and (8), we have the ratio of $A:B:C$ as $9:2:24$.
So option C is correct.
Note: Always in ratios and proportions try to compensate for the values of the same variable with the help of others, There is no other alternative other than short cut.
Complete step-by-step answer:
Given that $33\dfrac{1}{3}\% \,of\,A = 1.5\,of\,B = \dfrac{1}{8}\,of\,C$,
So,
$
\Rightarrow 33\dfrac{1}{3}\% \left( A \right) = \dfrac{{100}}{3}\% \left( A \right) = \dfrac{{100}}{3} \times \dfrac{1}{{100}}\left( A \right) = \dfrac{A}{3}........\left( 1 \right) \\
\Rightarrow 1.5\left( B \right) = \dfrac{{3B}}{2}........\left( 2 \right) \\
\Rightarrow \dfrac{1}{8}\left( C \right) = \dfrac{C}{8}..........\left( 3 \right) \\
$
Now with the help of (1) and (2)
$
\Rightarrow \dfrac{A}{3} = \dfrac{{3B}}{2} \\
\Rightarrow \dfrac{A}{B} = \dfrac{9}{2}........\left( 4 \right) \\
$
Now with the help of (2) and (3)
$
\Rightarrow \dfrac{{3B}}{2} = \dfrac{C}{8} \\
\Rightarrow \dfrac{B}{C} = \dfrac{1}{{12}}........\left( 5 \right) \\
$
Now with the help of (3) and (1)
$
\Rightarrow \dfrac{C}{8} = \dfrac{A}{3} \\
\Rightarrow \dfrac{A}{C} = \dfrac{3}{8}........\left( 6 \right) \\
$
Now with the help of (4) try to compensate the same value of A in (6)
We have, $\dfrac{A}{B} = \dfrac{9}{2}$and $\dfrac{A}{C} = \dfrac{3}{8}$, try to make the value of A same
$
\Rightarrow \dfrac{A}{C} = \dfrac{3}{8} \\
\Rightarrow d\dfrac{A}{C} = \dfrac{3}{8} \times \dfrac{3}{3} \\
\Rightarrow \dfrac{A}{C} = \dfrac{9}{{24}}.......\left( 7 \right) \\
$
Now we have $A = 9$
Now with the help of (7) try to compensate the same value of C and B in (5)
We have, $\dfrac{A}{C} = \dfrac{9}{{24}}$and $\dfrac{B}{C} = \dfrac{1}{{12}}$, try to make the value of C same
\[
\Rightarrow \dfrac{B}{C} = \dfrac{1}{{12}} \\
\Rightarrow \dfrac{B}{C} = \dfrac{1}{{12}} \times \dfrac{2}{2} \\
\Rightarrow \dfrac{B}{C} = \dfrac{2}{{24}}.........\left( 8 \right) \\
\]
From (7) and (8), we have the ratio of $A:B:C$ as $9:2:24$.
So option C is correct.
Note: Always in ratios and proportions try to compensate for the values of the same variable with the help of others, There is no other alternative other than short cut.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


