
If (3, – 4) and (– 6, 5) are the extremities of the diagonal of the parallelogram and (–2, 1) is its third vertex, then its fourth vertex is,
(a) (– 1, 0)
(b) (0, – 1)
(c) (– 1, 1)
(d) None of these
Answer
582.9k+ views
Hint: Here, in this question, first draw the parallelogram and mention the points. Use the principle of diagonals of parallelograms bisecting each other and hence the midpoint of both the diagonals is the same. Find the midpoint using the diagonal AC and then find the fourth vertex with the help of the given third vertex and the obtained midpoint.
Complete step-by-step answer:
Let us first draw the parallelogram with the given points and then find the fourth vertex of the parallelogram.
Here in the diagram we have taken the fourth vertex as D$\left( x,\,y \right)$.
Here, AC and BD are the diagonals of the parallelogram ABCD. Since, the diagonals of the parallelogram bisect each other, therefore, the midpoint O is the same for both the diagonals.
First let us find the midpoint O using the points A and C.
We know,
Midpoint O = $\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\,\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$
We have, $\left( {{x}_{1}},{{y}_{1}} \right)=\text{A}\left( -6,\,5 \right)$; $\left( {{x}_{2}},\,{{y}_{2}} \right)=\text{C}\left( 3,\,-4 \right)$
Therefore, O = $\left( \dfrac{\left( -6 \right)+3}{2},\,\dfrac{5+\left( -4 \right)}{2} \right)$
= $\left( \dfrac{-6+3}{2},\,\dfrac{5-4}{2} \right)$
Midpoint, O = $\left( \dfrac{-3}{2},\,\dfrac{1}{2} \right)$
Now, we know that the midpoint is the same for both the diagonals, therefore, O is also the midpoint of diagonal BD.
Here, we have, $\left( {{x}_{1}},{{y}_{1}} \right)=\text{B}\left( -2,\,1 \right)$; $\left( {{x}_{2}},\,{{y}_{2}} \right)=\text{D}\left( x,\,y \right)$
Midpoint, O = $\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\,\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$
$\left( \dfrac{-3}{2},\,\dfrac{1}{2} \right)$ = $\left( \dfrac{-2+x}{2},\,\dfrac{1+y}{2} \right)$
Comparing the both the sides we will equate the $x$ coordinates and $y$ coordinates, we get
$\dfrac{-3}{2}=\dfrac{-2+x}{2}$
Multiply by 2 on both the sides of the equation, we get
$\dfrac{-3}{2}\times 2=\dfrac{-2+x}{2}\times 2$
$\begin{align}
& -3=-2+x \\
& -3+2=x \\
& x=-1
\end{align}$
Now, we have
$\dfrac{1}{2}=\dfrac{1+y}{2}$
Multiply by 2 on both the sides of the equation, we get
$\begin{align}
& \dfrac{1}{2}\times 2=\dfrac{1+y}{2}\times 2 \\
& 1=1+y \\
& y=0
\end{align}$
Hence, the fourth vertex is $\left( x,\,y \right)$= $\left( -1,\,0 \right)$.
So, the correct answer is “Option A”.
Note: In this question, the parallelogram has two parallel sides with its opposite sides being equal. Unlike the diagonals of a rhombus which are perpendicular bisectors, the diagonals of a parallelogram are not perpendicular bisectors.
Complete step-by-step answer:
Let us first draw the parallelogram with the given points and then find the fourth vertex of the parallelogram.
Here in the diagram we have taken the fourth vertex as D$\left( x,\,y \right)$.
Here, AC and BD are the diagonals of the parallelogram ABCD. Since, the diagonals of the parallelogram bisect each other, therefore, the midpoint O is the same for both the diagonals.
First let us find the midpoint O using the points A and C.
We know,
Midpoint O = $\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\,\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$
We have, $\left( {{x}_{1}},{{y}_{1}} \right)=\text{A}\left( -6,\,5 \right)$; $\left( {{x}_{2}},\,{{y}_{2}} \right)=\text{C}\left( 3,\,-4 \right)$
Therefore, O = $\left( \dfrac{\left( -6 \right)+3}{2},\,\dfrac{5+\left( -4 \right)}{2} \right)$
= $\left( \dfrac{-6+3}{2},\,\dfrac{5-4}{2} \right)$
Midpoint, O = $\left( \dfrac{-3}{2},\,\dfrac{1}{2} \right)$
Now, we know that the midpoint is the same for both the diagonals, therefore, O is also the midpoint of diagonal BD.
Here, we have, $\left( {{x}_{1}},{{y}_{1}} \right)=\text{B}\left( -2,\,1 \right)$; $\left( {{x}_{2}},\,{{y}_{2}} \right)=\text{D}\left( x,\,y \right)$
Midpoint, O = $\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\,\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$
$\left( \dfrac{-3}{2},\,\dfrac{1}{2} \right)$ = $\left( \dfrac{-2+x}{2},\,\dfrac{1+y}{2} \right)$
Comparing the both the sides we will equate the $x$ coordinates and $y$ coordinates, we get
$\dfrac{-3}{2}=\dfrac{-2+x}{2}$
Multiply by 2 on both the sides of the equation, we get
$\dfrac{-3}{2}\times 2=\dfrac{-2+x}{2}\times 2$
$\begin{align}
& -3=-2+x \\
& -3+2=x \\
& x=-1
\end{align}$
Now, we have
$\dfrac{1}{2}=\dfrac{1+y}{2}$
Multiply by 2 on both the sides of the equation, we get
$\begin{align}
& \dfrac{1}{2}\times 2=\dfrac{1+y}{2}\times 2 \\
& 1=1+y \\
& y=0
\end{align}$
Hence, the fourth vertex is $\left( x,\,y \right)$= $\left( -1,\,0 \right)$.
So, the correct answer is “Option A”.
Note: In this question, the parallelogram has two parallel sides with its opposite sides being equal. Unlike the diagonals of a rhombus which are perpendicular bisectors, the diagonals of a parallelogram are not perpendicular bisectors.
Recently Updated Pages
Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

How can you explain that CCl4 has no dipole moment class 11 chemistry CBSE

Which will undergo SN2 reaction fastest among the following class 11 chemistry CBSE

The values of mass m for which the 100 kg block does class 11 physics CBSE

Why are voluntary muscles called striated muscles class 11 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

