
If $ 15{\tan ^2}\theta + 4{\sec ^2}\theta = 23 $ then $ {\tan ^2}\theta = $ ……
$ A.{\text{ }}\dfrac{{27}}{{15}} $
$ B.{\text{ 45}} $
$ C.{\text{ }}\dfrac{{19}}{{11}} $
$ D.{\text{ 1}} $
Answer
614.4k+ views
Hint: First, we should convert $ {\sec ^2}\theta $ in term of $ {\tan ^2}\theta $ $ \left( {{{\sec }^2}\theta = 1 + {{\tan }^2}\theta } \right) $ because we want to get the value of $ {\tan ^2}\theta $ then simply solve the equation and get the value of $ {\tan ^2}\theta $
Complete step-by-step answer:
$ 15{\tan ^2}\theta + 4{\sec ^2}\theta = 23 $
Now, using the formula $ {\sec ^2}\theta $ = (1+ $ {\tan ^2}\theta $ ), we get
$ 15{\tan ^2}\theta + 4\left( {1 + {{\tan }^2}\theta } \right) = 23 $
On simplifying this, we have
$ 15{\tan ^2}\theta + 4 + 4{\tan ^2}\theta = 23 $
Now, we will take $ {\tan ^2}\theta $ common, we get
$ \left( {15 + 4} \right){\tan ^2}\theta +4 = 23 $
Subtracting 4 on both the side,
$ 19{\tan ^2}\theta +4-4 = 23-4 $
we get,
$ 19{\tan ^2}\theta = 19 $
After transposing we get
$ {\tan ^2}\theta = \dfrac{{19}}{{19}} $
$ {\tan ^2}\theta = 1 $
Value of $ {\tan ^2}\theta $ is $ 1 $
So, The correct option is $ D $ .
Note- Some basic trigonometric equations should be in our mind which are useful for solving in this type of question
$ {\sin ^2}\theta + {\cos ^2}\theta = 1 $
$ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
$ \cos e{c^2}\theta - {\cot ^2}\theta = 1 $
$ \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} $
Complete step-by-step answer:
$ 15{\tan ^2}\theta + 4{\sec ^2}\theta = 23 $
Now, using the formula $ {\sec ^2}\theta $ = (1+ $ {\tan ^2}\theta $ ), we get
$ 15{\tan ^2}\theta + 4\left( {1 + {{\tan }^2}\theta } \right) = 23 $
On simplifying this, we have
$ 15{\tan ^2}\theta + 4 + 4{\tan ^2}\theta = 23 $
Now, we will take $ {\tan ^2}\theta $ common, we get
$ \left( {15 + 4} \right){\tan ^2}\theta +4 = 23 $
Subtracting 4 on both the side,
$ 19{\tan ^2}\theta +4-4 = 23-4 $
we get,
$ 19{\tan ^2}\theta = 19 $
After transposing we get
$ {\tan ^2}\theta = \dfrac{{19}}{{19}} $
$ {\tan ^2}\theta = 1 $
Value of $ {\tan ^2}\theta $ is $ 1 $
So, The correct option is $ D $ .
Note- Some basic trigonometric equations should be in our mind which are useful for solving in this type of question
$ {\sin ^2}\theta + {\cos ^2}\theta = 1 $
$ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
$ \cos e{c^2}\theta - {\cot ^2}\theta = 1 $
$ \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} $
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

