
If 1, x, y, z, 2 are in Geometric progression, the xyz=
A) $2\sqrt 2 $
B) 4
C) 8
D) None of this
Answer
484.2k+ views
Hint:
Geometric progression has the sequence $a,\,ar,\,a{r^2},..........,a{r^n}$ compare the values with the sequence and find the value of xyz. Then on solving the equation for a constant value, we’ll get our required result.
Complete step by step solution:
Given that 1, x, y, z, 2 are in Geometric progression, and the sequence of geometric progression is $a,\,ar,\,a{r^2},..........,a{r^n}$.
Where, a= first term and r= common ratio.
Now compare the values with the series, where
$
\Rightarrow a = 1......\left( 1 \right) \\
\, \Rightarrow x = ar........\left( 2 \right) \\
\Rightarrow y = a{r^2}.........\left( 3 \right) \\
\Rightarrow z = a{r^3}..........\left( 4 \right) \\
\Rightarrow 2 = a{r^4}...........\left( 5 \right) \\
$
Substitute the value of a=1 in equation (5)
$
\Rightarrow 2 = a{r^4} \\
\Rightarrow a{r^4} = 2 \\
\Rightarrow \left( 1 \right){r^4} = 2 \\
\Rightarrow {r^4} = 2..........\left( 6 \right) \\
\Rightarrow {r^2} = \sqrt 2 .........\left( 7 \right) \\
$
For finding the value of xyz, multiply (2),(3) and (4)
$
\Rightarrow xyz = \left( {ar} \right)\left( {a{r^2}} \right)\left( {a{r^3}} \right) \\
\Rightarrow xyz = {a^3}{r^6} \\
\Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\
$
Where, ${r^4} = 2$, a=1, and ${r^2} = \sqrt 2 $
Substitute the values in the above equation
$
\Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\
\Rightarrow xyz = 1\left( {2\sqrt 2 } \right) \\
\Rightarrow xyz = 2\sqrt 2 \\
$
So, the value of $xyz = 2\sqrt 2 $.
Note:
Terms are in Geometric progression only when the ratio of any two adjacent values in the sequence is the same throughout the series. Whenever we need to choose three terms in GP we’ll always choose $\dfrac{a}{r}, a, ar$.
Geometric progression has the sequence $a,\,ar,\,a{r^2},..........,a{r^n}$ compare the values with the sequence and find the value of xyz. Then on solving the equation for a constant value, we’ll get our required result.
Complete step by step solution:
Given that 1, x, y, z, 2 are in Geometric progression, and the sequence of geometric progression is $a,\,ar,\,a{r^2},..........,a{r^n}$.
Where, a= first term and r= common ratio.
Now compare the values with the series, where
$
\Rightarrow a = 1......\left( 1 \right) \\
\, \Rightarrow x = ar........\left( 2 \right) \\
\Rightarrow y = a{r^2}.........\left( 3 \right) \\
\Rightarrow z = a{r^3}..........\left( 4 \right) \\
\Rightarrow 2 = a{r^4}...........\left( 5 \right) \\
$
Substitute the value of a=1 in equation (5)
$
\Rightarrow 2 = a{r^4} \\
\Rightarrow a{r^4} = 2 \\
\Rightarrow \left( 1 \right){r^4} = 2 \\
\Rightarrow {r^4} = 2..........\left( 6 \right) \\
\Rightarrow {r^2} = \sqrt 2 .........\left( 7 \right) \\
$
For finding the value of xyz, multiply (2),(3) and (4)
$
\Rightarrow xyz = \left( {ar} \right)\left( {a{r^2}} \right)\left( {a{r^3}} \right) \\
\Rightarrow xyz = {a^3}{r^6} \\
\Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\
$
Where, ${r^4} = 2$, a=1, and ${r^2} = \sqrt 2 $
Substitute the values in the above equation
$
\Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\
\Rightarrow xyz = 1\left( {2\sqrt 2 } \right) \\
\Rightarrow xyz = 2\sqrt 2 \\
$
So, the value of $xyz = 2\sqrt 2 $.
Note:
Terms are in Geometric progression only when the ratio of any two adjacent values in the sequence is the same throughout the series. Whenever we need to choose three terms in GP we’ll always choose $\dfrac{a}{r}, a, ar$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

State the laws of reflection of light
