
If 1, x, y, z, 2 are in Geometric progression, the xyz=
A) $2\sqrt 2 $
B) 4
C) 8
D) None of this
Answer
579.3k+ views
Hint:
Geometric progression has the sequence $a,\,ar,\,a{r^2},..........,a{r^n}$ compare the values with the sequence and find the value of xyz. Then on solving the equation for a constant value, we’ll get our required result.
Complete step by step solution:
Given that 1, x, y, z, 2 are in Geometric progression, and the sequence of geometric progression is $a,\,ar,\,a{r^2},..........,a{r^n}$.
Where, a= first term and r= common ratio.
Now compare the values with the series, where
$
\Rightarrow a = 1......\left( 1 \right) \\
\, \Rightarrow x = ar........\left( 2 \right) \\
\Rightarrow y = a{r^2}.........\left( 3 \right) \\
\Rightarrow z = a{r^3}..........\left( 4 \right) \\
\Rightarrow 2 = a{r^4}...........\left( 5 \right) \\
$
Substitute the value of a=1 in equation (5)
$
\Rightarrow 2 = a{r^4} \\
\Rightarrow a{r^4} = 2 \\
\Rightarrow \left( 1 \right){r^4} = 2 \\
\Rightarrow {r^4} = 2..........\left( 6 \right) \\
\Rightarrow {r^2} = \sqrt 2 .........\left( 7 \right) \\
$
For finding the value of xyz, multiply (2),(3) and (4)
$
\Rightarrow xyz = \left( {ar} \right)\left( {a{r^2}} \right)\left( {a{r^3}} \right) \\
\Rightarrow xyz = {a^3}{r^6} \\
\Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\
$
Where, ${r^4} = 2$, a=1, and ${r^2} = \sqrt 2 $
Substitute the values in the above equation
$
\Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\
\Rightarrow xyz = 1\left( {2\sqrt 2 } \right) \\
\Rightarrow xyz = 2\sqrt 2 \\
$
So, the value of $xyz = 2\sqrt 2 $.
Note:
Terms are in Geometric progression only when the ratio of any two adjacent values in the sequence is the same throughout the series. Whenever we need to choose three terms in GP we’ll always choose $\dfrac{a}{r}, a, ar$.
Geometric progression has the sequence $a,\,ar,\,a{r^2},..........,a{r^n}$ compare the values with the sequence and find the value of xyz. Then on solving the equation for a constant value, we’ll get our required result.
Complete step by step solution:
Given that 1, x, y, z, 2 are in Geometric progression, and the sequence of geometric progression is $a,\,ar,\,a{r^2},..........,a{r^n}$.
Where, a= first term and r= common ratio.
Now compare the values with the series, where
$
\Rightarrow a = 1......\left( 1 \right) \\
\, \Rightarrow x = ar........\left( 2 \right) \\
\Rightarrow y = a{r^2}.........\left( 3 \right) \\
\Rightarrow z = a{r^3}..........\left( 4 \right) \\
\Rightarrow 2 = a{r^4}...........\left( 5 \right) \\
$
Substitute the value of a=1 in equation (5)
$
\Rightarrow 2 = a{r^4} \\
\Rightarrow a{r^4} = 2 \\
\Rightarrow \left( 1 \right){r^4} = 2 \\
\Rightarrow {r^4} = 2..........\left( 6 \right) \\
\Rightarrow {r^2} = \sqrt 2 .........\left( 7 \right) \\
$
For finding the value of xyz, multiply (2),(3) and (4)
$
\Rightarrow xyz = \left( {ar} \right)\left( {a{r^2}} \right)\left( {a{r^3}} \right) \\
\Rightarrow xyz = {a^3}{r^6} \\
\Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\
$
Where, ${r^4} = 2$, a=1, and ${r^2} = \sqrt 2 $
Substitute the values in the above equation
$
\Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\
\Rightarrow xyz = 1\left( {2\sqrt 2 } \right) \\
\Rightarrow xyz = 2\sqrt 2 \\
$
So, the value of $xyz = 2\sqrt 2 $.
Note:
Terms are in Geometric progression only when the ratio of any two adjacent values in the sequence is the same throughout the series. Whenever we need to choose three terms in GP we’ll always choose $\dfrac{a}{r}, a, ar$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

