
If 1, x, y, z, 2 are in Geometric progression, the xyz=
A) $2\sqrt 2 $
B) 4
C) 8
D) None of this
Answer
566.1k+ views
Hint:
Geometric progression has the sequence $a,\,ar,\,a{r^2},..........,a{r^n}$ compare the values with the sequence and find the value of xyz. Then on solving the equation for a constant value, we’ll get our required result.
Complete step by step solution:
Given that 1, x, y, z, 2 are in Geometric progression, and the sequence of geometric progression is $a,\,ar,\,a{r^2},..........,a{r^n}$.
Where, a= first term and r= common ratio.
Now compare the values with the series, where
$
\Rightarrow a = 1......\left( 1 \right) \\
\, \Rightarrow x = ar........\left( 2 \right) \\
\Rightarrow y = a{r^2}.........\left( 3 \right) \\
\Rightarrow z = a{r^3}..........\left( 4 \right) \\
\Rightarrow 2 = a{r^4}...........\left( 5 \right) \\
$
Substitute the value of a=1 in equation (5)
$
\Rightarrow 2 = a{r^4} \\
\Rightarrow a{r^4} = 2 \\
\Rightarrow \left( 1 \right){r^4} = 2 \\
\Rightarrow {r^4} = 2..........\left( 6 \right) \\
\Rightarrow {r^2} = \sqrt 2 .........\left( 7 \right) \\
$
For finding the value of xyz, multiply (2),(3) and (4)
$
\Rightarrow xyz = \left( {ar} \right)\left( {a{r^2}} \right)\left( {a{r^3}} \right) \\
\Rightarrow xyz = {a^3}{r^6} \\
\Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\
$
Where, ${r^4} = 2$, a=1, and ${r^2} = \sqrt 2 $
Substitute the values in the above equation
$
\Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\
\Rightarrow xyz = 1\left( {2\sqrt 2 } \right) \\
\Rightarrow xyz = 2\sqrt 2 \\
$
So, the value of $xyz = 2\sqrt 2 $.
Note:
Terms are in Geometric progression only when the ratio of any two adjacent values in the sequence is the same throughout the series. Whenever we need to choose three terms in GP we’ll always choose $\dfrac{a}{r}, a, ar$.
Geometric progression has the sequence $a,\,ar,\,a{r^2},..........,a{r^n}$ compare the values with the sequence and find the value of xyz. Then on solving the equation for a constant value, we’ll get our required result.
Complete step by step solution:
Given that 1, x, y, z, 2 are in Geometric progression, and the sequence of geometric progression is $a,\,ar,\,a{r^2},..........,a{r^n}$.
Where, a= first term and r= common ratio.
Now compare the values with the series, where
$
\Rightarrow a = 1......\left( 1 \right) \\
\, \Rightarrow x = ar........\left( 2 \right) \\
\Rightarrow y = a{r^2}.........\left( 3 \right) \\
\Rightarrow z = a{r^3}..........\left( 4 \right) \\
\Rightarrow 2 = a{r^4}...........\left( 5 \right) \\
$
Substitute the value of a=1 in equation (5)
$
\Rightarrow 2 = a{r^4} \\
\Rightarrow a{r^4} = 2 \\
\Rightarrow \left( 1 \right){r^4} = 2 \\
\Rightarrow {r^4} = 2..........\left( 6 \right) \\
\Rightarrow {r^2} = \sqrt 2 .........\left( 7 \right) \\
$
For finding the value of xyz, multiply (2),(3) and (4)
$
\Rightarrow xyz = \left( {ar} \right)\left( {a{r^2}} \right)\left( {a{r^3}} \right) \\
\Rightarrow xyz = {a^3}{r^6} \\
\Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\
$
Where, ${r^4} = 2$, a=1, and ${r^2} = \sqrt 2 $
Substitute the values in the above equation
$
\Rightarrow xyz = {a^3}\left( {{r^2} \times {r^4}} \right) \\
\Rightarrow xyz = 1\left( {2\sqrt 2 } \right) \\
\Rightarrow xyz = 2\sqrt 2 \\
$
So, the value of $xyz = 2\sqrt 2 $.
Note:
Terms are in Geometric progression only when the ratio of any two adjacent values in the sequence is the same throughout the series. Whenever we need to choose three terms in GP we’ll always choose $\dfrac{a}{r}, a, ar$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

