
If (1 – p) is a root of quadratic equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\] , then both the roots are:-
a)0, -1
b)-1, 1
c)0, 1
d)-1, 2
Answer
548.4k+ views
Hint: Every quadratic equation is of the form
\[\begin{align}
& a{{x}^{2}}+bx+c=0 \\
& which\ on\ conversion,\ we\ get \\
& {{x}^{2}}-\left( \dfrac{-b}{a} \right)x+\dfrac{c}{a}=0 \\
\end{align}\]
The coefficient of x gives the sum of the roots of the given equation with an appropriate negative sign that is \[\left( \dfrac{-b}{a} \right)\]. The constant term of the equation will give the product of the two roots of the equation \[\dfrac{c}{a}\] . Now, using these properties, one could get to the solution.
Complete step by step answer:
Every quadratic equation is in the form, ${{x}^{2}}-Sx+P=0$(where ‘S’ is the sum of the roots and ‘P’ is the product the roots).
We are given that one of the roots of the given equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\]is (1-p). Let $\alpha $be the other root of the equation.
Sum of the roots$=-p.....................(1)$
Product of the roots=$(1-p)......................(2)$
On comparing the equation given in the question with the general equation, we get,
Sum of the roots ,$S=(1-p)+\alpha ................(3)$
Product of the roots ,$P=(1-p)\alpha ...................(4)$
Equating (1) and (3), we get,
$-p=1-p+\alpha $
$\therefore \alpha =-1$
Hence, one of the roots of the equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\] is -1.
Substituting for $\alpha $ in (4) and equating it with (2), we obtain,
$1-p=-(1-p)$
$2=2p$
$\therefore p=1$
We know that, (1-p) is a root of the equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\],
$\therefore 1-p=1-1=0$
Hence, one of the roots of the equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\]is 0.
$\therefore $ The roots of the equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\]are 0 and -1.
So, the correct answer is “Option a”.
Note: Alternate method:
We have,
\[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0......................(1)\]
We are given (1 – p) is a root of quadratic equation\[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\] .
Hence, on substituting $x$ by (1 – p), we get,
\[{{(1-p)}^{2}}+\text{ }p(1-p)\text{ }+\text{ }\left( 1\text{ }\text{ }p \right)\text{ }=\text{ }0\]
Taking (1-p) common for all the terms, we obtain,
\[(1-p)\left( (1-p)+p+1 \right)=0\]
\[(1-p)\left( 2 \right)=0\]
Since, 2 is a constant and cannot take the value of zero,
\[1-p=0\]
\[\therefore p=1\]
Substituting p=1 in equation (1), we obtain,
\[{{x}^{2}}+\text{ (1)}x\text{ }+\text{ }\left( 1\text{ }\text{ 1} \right)=0\]
\[{{x}^{2}}+\text{ }x\text{ }=0\]
$x(x+1)=0$
Hence,
$x=0.............(2)$
$x+1=0$
$x=-1...............(3)$
$\therefore $ From (2) and (3), the zeroes of the equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\]are 0 and -1.
\[\begin{align}
& a{{x}^{2}}+bx+c=0 \\
& which\ on\ conversion,\ we\ get \\
& {{x}^{2}}-\left( \dfrac{-b}{a} \right)x+\dfrac{c}{a}=0 \\
\end{align}\]
The coefficient of x gives the sum of the roots of the given equation with an appropriate negative sign that is \[\left( \dfrac{-b}{a} \right)\]. The constant term of the equation will give the product of the two roots of the equation \[\dfrac{c}{a}\] . Now, using these properties, one could get to the solution.
Complete step by step answer:
Every quadratic equation is in the form, ${{x}^{2}}-Sx+P=0$(where ‘S’ is the sum of the roots and ‘P’ is the product the roots).
We are given that one of the roots of the given equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\]is (1-p). Let $\alpha $be the other root of the equation.
Sum of the roots$=-p.....................(1)$
Product of the roots=$(1-p)......................(2)$
On comparing the equation given in the question with the general equation, we get,
Sum of the roots ,$S=(1-p)+\alpha ................(3)$
Product of the roots ,$P=(1-p)\alpha ...................(4)$
Equating (1) and (3), we get,
$-p=1-p+\alpha $
$\therefore \alpha =-1$
Hence, one of the roots of the equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\] is -1.
Substituting for $\alpha $ in (4) and equating it with (2), we obtain,
$1-p=-(1-p)$
$2=2p$
$\therefore p=1$
We know that, (1-p) is a root of the equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\],
$\therefore 1-p=1-1=0$
Hence, one of the roots of the equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\]is 0.
$\therefore $ The roots of the equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\]are 0 and -1.
So, the correct answer is “Option a”.
Note: Alternate method:
We have,
\[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0......................(1)\]
We are given (1 – p) is a root of quadratic equation\[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\] .
Hence, on substituting $x$ by (1 – p), we get,
\[{{(1-p)}^{2}}+\text{ }p(1-p)\text{ }+\text{ }\left( 1\text{ }\text{ }p \right)\text{ }=\text{ }0\]
Taking (1-p) common for all the terms, we obtain,
\[(1-p)\left( (1-p)+p+1 \right)=0\]
\[(1-p)\left( 2 \right)=0\]
Since, 2 is a constant and cannot take the value of zero,
\[1-p=0\]
\[\therefore p=1\]
Substituting p=1 in equation (1), we obtain,
\[{{x}^{2}}+\text{ (1)}x\text{ }+\text{ }\left( 1\text{ }\text{ 1} \right)=0\]
\[{{x}^{2}}+\text{ }x\text{ }=0\]
$x(x+1)=0$
Hence,
$x=0.............(2)$
$x+1=0$
$x=-1...............(3)$
$\therefore $ From (2) and (3), the zeroes of the equation \[{{x}^{2}}+\text{ }px\text{ }+\text{ }\left( 1\text{ }\text{- }p \right)\text{ }=\text{ }0\]are 0 and -1.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

