
If \[0 \leqslant x < 2\pi \] , then the number of real values of x , which satisfy the equation $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$;
A. $3$
B. $5$
C. $7$
D. $9$
Answer
573k+ views
Hint:In the above question, the given expression is $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ , we need to find the value of x which satisfies this expression. So, solve the expression using $\cos a + \cos b = 2\cos \dfrac{{(a + b)}}{2}\cos \dfrac{{(a - b)}}{2}$ trigonometric formula and get the required answer.
Complete step-by-step answer:
According to the question we need to find numbers of x that will satisfy both the equations.
Consider (1)
Given \[0 \leqslant x < 2\pi .......................(1)\]
$\cos x + \cos 2x + \cos 3x + \cos 4x = 0......................(2)$
$
\cos x + \cos 2x + \cos 3x + \cos 4x = 0 \\
\cos x + \cos 3x + \cos 2x + \cos 4x = 0 \\
{\text{Now we can say that}} \\
\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}....(3) \\
2\cos \dfrac{{(x + 3x)}}{2}\cos \dfrac{{(x - 3x)}}{2} + 2\cos \dfrac{{(2x + 4x)}}{2}\cos \dfrac{{(2x - 4x)}}{2} = 0 \\
2\cos 2x\cos ( - x) + 2\cos (3x)\cos ( - x) = 0 \\
{\text{Now, }}\cos ( - a) = \cos (a) \\
$
$4\cos x\cos \dfrac{{5x}}{2}\cos \dfrac{{ - x}}{2} = 0$
As we know that $\cos ( - a) = \cos a$, so we can write
$2\cos 2x\cos ( x) + 2\cos (3x)\cos ( x) = 0$
Taking $2\cos x$ common we get
$2\cos x (\cos 2x + \cos 3x)$
Again applying the formula $\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}$ we get,
$2\cos x (2\cos \dfrac{{2x + 3x }}{2}\cos \dfrac{{2x - 3x}}{2})$
$2\cos x (2\cos \dfrac{{5x }}{2}\cos \dfrac{{ - x}}{2})$
$4\cos x\cos \dfrac{{5x}}{2}\cos \dfrac{x}{2} = 0$
$
\cos x = 0;\cos \dfrac{x}{2} = 0;\cos \dfrac{{5x}}{2} = 0 \\
{\text{Use ,}}\cos (2n + 1)\dfrac{\pi }{2} = 0;n \in \mathbb{Z} \\
\cos x = \cos (2n + 1)\dfrac{\pi }{2};\cos \dfrac{x}{2} = \cos (2m + 1)\dfrac{\pi }{2};\cos \dfrac{{5x}}{2} = \cos (2k + 1)\dfrac{\pi }{2};n,k,m \in \mathbb{Z} \\
x = (2n + 1)\dfrac{\pi }{2};\dfrac{x}{2} = (2m + 1)\dfrac{\pi }{2};\dfrac{{5x}}{2} = (2k + 1)\dfrac{\pi }{2} \\
$
Now, we know that \[0 \leqslant x < 2\pi \]
Now taking
$
x = (2n + 1)\dfrac{\pi }{2},n \in \mathbb{Z} \\
{\text{When; }}n = 0 = > x = \dfrac{\pi }{2} \\
n = 1 = > x = \dfrac{{3\pi }}{2} \\
So,x = \dfrac{\pi }{2},\dfrac{{3\pi }}{2}.........................(4) \\
$
Now taking
$
\dfrac{x}{2} = (2m + 1)\dfrac{\pi }{2},k \in \mathbb{Z} \\
x = (2m + 1)\pi \\
{\text{When, }}m = 0 = > x = \pi ..............(5) \\
$
Now taking ,
$
\dfrac{{5x}}{2} = (2k + 1)\dfrac{\pi }{2},k \in \mathbb{Z} \\
x = (2k + 1)\dfrac{\pi }{5} \\
{\text{When,}} \\
k = 0, = > x = \dfrac{\pi }{5} \\
k = 1, = > x = \dfrac{{3\pi }}{5} \\
k = 2, = > x = \pi \\
k = 3, = > x = \dfrac{{7\pi }}{5} \\
k = 4, = > x = \dfrac{{9\pi }}{5} \\
so, \\
x = \dfrac{\pi }{5},\dfrac{{3\pi }}{5},\pi ,\dfrac{{7\pi }}{5},\dfrac{{9\pi }}{5}.........................(6) \\
$
Now , from (4), (5), (6)
$x = \dfrac{\pi }{2},\dfrac{{3\pi }}{2},\dfrac{\pi }{5},\dfrac{{3\pi }}{5},\pi ,\dfrac{{7\pi }}{5},\dfrac{{9\pi }}{5}$………………..
So, there are seven values of x satisfying (1) and (2)
So, the correct answer is “Option C”.
Note:Alternative method to solve their question is
$\cos x + \cos 2x + \cos 3x + \cos 4x = 0$
We can also use (3) for $\cos x + \cos 2x;\cos 3x + \cos 4x,$like this,
$
2\cos \dfrac{{3x}}{2}\cos \dfrac{x}{2} + 2\cos \dfrac{{7x}}{2}\cos \dfrac{x}{2} = 0 \\
2\cos \dfrac{x}{2}(\cos \dfrac{{3x}}{2} + \cos \dfrac{{7x}}{2}) = 0 \\
\\
$
Now, again using (3)
$
2\cos \dfrac{x}{2}(2\cos 5x\cos 2x) = 0 \\
cox\dfrac{x}{2} = 0;\cos 2x = 0;\cos 5x = 0 \\
$
Similarly find the real values of x.
Complete step-by-step answer:
According to the question we need to find numbers of x that will satisfy both the equations.
Consider (1)
Given \[0 \leqslant x < 2\pi .......................(1)\]
$\cos x + \cos 2x + \cos 3x + \cos 4x = 0......................(2)$
$
\cos x + \cos 2x + \cos 3x + \cos 4x = 0 \\
\cos x + \cos 3x + \cos 2x + \cos 4x = 0 \\
{\text{Now we can say that}} \\
\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}....(3) \\
2\cos \dfrac{{(x + 3x)}}{2}\cos \dfrac{{(x - 3x)}}{2} + 2\cos \dfrac{{(2x + 4x)}}{2}\cos \dfrac{{(2x - 4x)}}{2} = 0 \\
2\cos 2x\cos ( - x) + 2\cos (3x)\cos ( - x) = 0 \\
{\text{Now, }}\cos ( - a) = \cos (a) \\
$
$4\cos x\cos \dfrac{{5x}}{2}\cos \dfrac{{ - x}}{2} = 0$
As we know that $\cos ( - a) = \cos a$, so we can write
$2\cos 2x\cos ( x) + 2\cos (3x)\cos ( x) = 0$
Taking $2\cos x$ common we get
$2\cos x (\cos 2x + \cos 3x)$
Again applying the formula $\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}$ we get,
$2\cos x (2\cos \dfrac{{2x + 3x }}{2}\cos \dfrac{{2x - 3x}}{2})$
$2\cos x (2\cos \dfrac{{5x }}{2}\cos \dfrac{{ - x}}{2})$
$4\cos x\cos \dfrac{{5x}}{2}\cos \dfrac{x}{2} = 0$
$
\cos x = 0;\cos \dfrac{x}{2} = 0;\cos \dfrac{{5x}}{2} = 0 \\
{\text{Use ,}}\cos (2n + 1)\dfrac{\pi }{2} = 0;n \in \mathbb{Z} \\
\cos x = \cos (2n + 1)\dfrac{\pi }{2};\cos \dfrac{x}{2} = \cos (2m + 1)\dfrac{\pi }{2};\cos \dfrac{{5x}}{2} = \cos (2k + 1)\dfrac{\pi }{2};n,k,m \in \mathbb{Z} \\
x = (2n + 1)\dfrac{\pi }{2};\dfrac{x}{2} = (2m + 1)\dfrac{\pi }{2};\dfrac{{5x}}{2} = (2k + 1)\dfrac{\pi }{2} \\
$
Now, we know that \[0 \leqslant x < 2\pi \]
Now taking
$
x = (2n + 1)\dfrac{\pi }{2},n \in \mathbb{Z} \\
{\text{When; }}n = 0 = > x = \dfrac{\pi }{2} \\
n = 1 = > x = \dfrac{{3\pi }}{2} \\
So,x = \dfrac{\pi }{2},\dfrac{{3\pi }}{2}.........................(4) \\
$
Now taking
$
\dfrac{x}{2} = (2m + 1)\dfrac{\pi }{2},k \in \mathbb{Z} \\
x = (2m + 1)\pi \\
{\text{When, }}m = 0 = > x = \pi ..............(5) \\
$
Now taking ,
$
\dfrac{{5x}}{2} = (2k + 1)\dfrac{\pi }{2},k \in \mathbb{Z} \\
x = (2k + 1)\dfrac{\pi }{5} \\
{\text{When,}} \\
k = 0, = > x = \dfrac{\pi }{5} \\
k = 1, = > x = \dfrac{{3\pi }}{5} \\
k = 2, = > x = \pi \\
k = 3, = > x = \dfrac{{7\pi }}{5} \\
k = 4, = > x = \dfrac{{9\pi }}{5} \\
so, \\
x = \dfrac{\pi }{5},\dfrac{{3\pi }}{5},\pi ,\dfrac{{7\pi }}{5},\dfrac{{9\pi }}{5}.........................(6) \\
$
Now , from (4), (5), (6)
$x = \dfrac{\pi }{2},\dfrac{{3\pi }}{2},\dfrac{\pi }{5},\dfrac{{3\pi }}{5},\pi ,\dfrac{{7\pi }}{5},\dfrac{{9\pi }}{5}$………………..
So, there are seven values of x satisfying (1) and (2)
So, the correct answer is “Option C”.
Note:Alternative method to solve their question is
$\cos x + \cos 2x + \cos 3x + \cos 4x = 0$
We can also use (3) for $\cos x + \cos 2x;\cos 3x + \cos 4x,$like this,
$
2\cos \dfrac{{3x}}{2}\cos \dfrac{x}{2} + 2\cos \dfrac{{7x}}{2}\cos \dfrac{x}{2} = 0 \\
2\cos \dfrac{x}{2}(\cos \dfrac{{3x}}{2} + \cos \dfrac{{7x}}{2}) = 0 \\
\\
$
Now, again using (3)
$
2\cos \dfrac{x}{2}(2\cos 5x\cos 2x) = 0 \\
cox\dfrac{x}{2} = 0;\cos 2x = 0;\cos 5x = 0 \\
$
Similarly find the real values of x.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

