
Identify the general term of AGP.
A) ${T_n} = \left[ {a + (n - 1)d} \right]$
B) ${T_n} = {r^{(n - 1)}}$
C) ${T_n} = \left[ {a + (n - 1)d} \right]{r^{(n - 1)}}$
D) None of these
Answer
601.8k+ views
Hint- In AGP, i.e. Arithmetic-Geometric Progression, If we consider $a$ as the first term of AP, $d$ be the common difference of AP, and $r$ be the common ratio of GP, then AGP can be : $a,(a + d)r,(a + 2d){r^2},(a + 3d){r^3},....$.
Complete step-by-step answer:
In our daily life, we come across many patterns, so we should know about various patterns in our daily life. The examples of some pattern are given below:
i) 1,2,3,4,5……28,29,30
ii) $2,{2^2},{2^3},{2^4},...$
iii) $1.2,{2.2^2},{3.2^2},{4.2^3},...$
According to question,
We need to answer about the general term of AGP, so AGP can be written as:
$a,(a + d)r,(a + 2d){r^2},(a + 3d){r^3},....$
So, the general term of AGP is ${T_n} = \left[ {a + (n - 1)d} \right]{r^{(n - 1)}}$.
Hence, option (C) is the correct answer.
Note- The general term of AGP, ${T_n} = \left[ {a + (n - 1)d} \right]{r^{(n - 1)}}$ shows the behavior of AP and GP both. The ${n^{th}}$term of AGP is obtained by multiplying the corresponding terms of the arithmetic progression and geometric progression. For example: the numerators are in AP and denominators are in GP as shown below:
$\dfrac{1}{2} + \dfrac{3}{4} + \dfrac{5}{8} + \dfrac{7}{{16}} + ....$
Complete step-by-step answer:
In our daily life, we come across many patterns, so we should know about various patterns in our daily life. The examples of some pattern are given below:
i) 1,2,3,4,5……28,29,30
ii) $2,{2^2},{2^3},{2^4},...$
iii) $1.2,{2.2^2},{3.2^2},{4.2^3},...$
According to question,
We need to answer about the general term of AGP, so AGP can be written as:
$a,(a + d)r,(a + 2d){r^2},(a + 3d){r^3},....$
So, the general term of AGP is ${T_n} = \left[ {a + (n - 1)d} \right]{r^{(n - 1)}}$.
Hence, option (C) is the correct answer.
Note- The general term of AGP, ${T_n} = \left[ {a + (n - 1)d} \right]{r^{(n - 1)}}$ shows the behavior of AP and GP both. The ${n^{th}}$term of AGP is obtained by multiplying the corresponding terms of the arithmetic progression and geometric progression. For example: the numerators are in AP and denominators are in GP as shown below:
$\dfrac{1}{2} + \dfrac{3}{4} + \dfrac{5}{8} + \dfrac{7}{{16}} + ....$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

