
How does nPr and nCr work?
Answer
504.3k+ views
Hint: Permutation and Combinations, the various ways in which objects from a set may be selected, generally without replacement to form subsets. The selection of subsets is called a permutation when the order of selection is a factor. A combination is not a factor.
Complete step-by-step solution:
nPr and nCr are the probability function that represents permutation and combinations. The formula of finding nPr and nCr is
$^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
$^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Here n is the total number of objects and r is the number of selected objects.
Generally nPr is used for permutation, representing selecting a group of ‘r’ objects from a group of ‘n’ number of objects. The order of objects matters in case of permutation. The formula of permutation is:
$^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
For example 7 books have to arrange 5 on the shelf. So we can solve it from permutation.
${ \Rightarrow ^7}{P_5} = \dfrac{{7!}}{{(7 - 5)!}}$
${ \Rightarrow ^7}{P_5} = \dfrac{{7!}}{{2!}}$
${ \Rightarrow ^7}{P_5} = \dfrac{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{2 \times 1}}$
${ \Rightarrow ^7}{P_5} = 2520ways$
And nCr is used for combinations representing selecting of objects from a group of objects where order of object does not matter.
$^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
For example 7 books have to arrange 5 on the shelf. So we can solve it by combination.
${ \Rightarrow ^7}{C_5} = \dfrac{{7!}}{{5!(7 - 5)!}}$
${ \Rightarrow ^7}{C_5} = \dfrac{{7!}}{{5! \times 2!}}$
${ \Rightarrow ^7}{C_5} = \dfrac{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{5 \times 4 \times 3 \times 2 \times 1 \times 2 \times 1}}$
${ \Rightarrow ^7}{C_5} = 21$
Note: Factorial is a function that multiplies a number by every number below it. The function is used, among other things, to find the number of ways ‘n’ objects can be arranged. Factorial may be indicated by ‘!’ by this sign. Factorial is used for non-negative real numbers. For a negative number it will be a complex number.
Complete step-by-step solution:
nPr and nCr are the probability function that represents permutation and combinations. The formula of finding nPr and nCr is
$^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
$^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Here n is the total number of objects and r is the number of selected objects.
Generally nPr is used for permutation, representing selecting a group of ‘r’ objects from a group of ‘n’ number of objects. The order of objects matters in case of permutation. The formula of permutation is:
$^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
For example 7 books have to arrange 5 on the shelf. So we can solve it from permutation.
${ \Rightarrow ^7}{P_5} = \dfrac{{7!}}{{(7 - 5)!}}$
${ \Rightarrow ^7}{P_5} = \dfrac{{7!}}{{2!}}$
${ \Rightarrow ^7}{P_5} = \dfrac{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{2 \times 1}}$
${ \Rightarrow ^7}{P_5} = 2520ways$
And nCr is used for combinations representing selecting of objects from a group of objects where order of object does not matter.
$^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
For example 7 books have to arrange 5 on the shelf. So we can solve it by combination.
${ \Rightarrow ^7}{C_5} = \dfrac{{7!}}{{5!(7 - 5)!}}$
${ \Rightarrow ^7}{C_5} = \dfrac{{7!}}{{5! \times 2!}}$
${ \Rightarrow ^7}{C_5} = \dfrac{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{5 \times 4 \times 3 \times 2 \times 1 \times 2 \times 1}}$
${ \Rightarrow ^7}{C_5} = 21$
Note: Factorial is a function that multiplies a number by every number below it. The function is used, among other things, to find the number of ways ‘n’ objects can be arranged. Factorial may be indicated by ‘!’ by this sign. Factorial is used for non-negative real numbers. For a negative number it will be a complex number.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

