Answer
Verified
424.8k+ views
Hint:In the given question, we have been asked to find the value of ‘x’ and it is given that \[\ln \left( x \right)-2=0\]. In order to solve the question, first we need to use the basic property of logarithms i.e. If \[x\] and b are positive real numbers and b is not equal to 1, then \[{{\log }_{b}}\left( x \right)=y\] is equivalent to \[{{b}^{y}}=x\]. Then we simplify the equation further to get the possible values of ‘x’. After applying the properties of logarithm, we will solve the equation in a way we solve general linear equations. Then, we will get the required solution.
Formula used:
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\] is equivalent to \[{{b}^{y}}=x\].
Complete step by step solution:
We have given that,
\[\ln \left( x \right)-2=0\]
Transposing 2 to the right side of the equation, we get
\[\Rightarrow \ln \left( x \right)=2\]
Using the definition of log,
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\]is equivalent to\[{{b}^{y}}=x\].
Applying the above property, we get
\[\Rightarrow x={{e}^{2}}\]
By using the calculator,
\[\Rightarrow {{e}^{2}}=7.389\]
Therefore, the possible value of ‘x’ is \[{{e}^{2}}\] or 7.389.
It is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Formula used:
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\] is equivalent to \[{{b}^{y}}=x\].
Complete step by step solution:
We have given that,
\[\ln \left( x \right)-2=0\]
Transposing 2 to the right side of the equation, we get
\[\Rightarrow \ln \left( x \right)=2\]
Using the definition of log,
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\]is equivalent to\[{{b}^{y}}=x\].
Applying the above property, we get
\[\Rightarrow x={{e}^{2}}\]
By using the calculator,
\[\Rightarrow {{e}^{2}}=7.389\]
Therefore, the possible value of ‘x’ is \[{{e}^{2}}\] or 7.389.
It is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE