
How do you solve $\sqrt{x+6}=6-2\sqrt{5-x}$ ? \[\]
Answer
561k+ views
Hint: We use the domain of square root function to find the range of values valid for $x$. We take the square roots terms to one side and then square both sides. We square accordingly to eliminate square roots. We use the quadratic formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ to find the solutions and see if the solutions satisfy valid range of values.
Complete step by step answer:
We know that a square root function takes non-negative real numbers called arguments and returns non-negative real numbers. We are asked in the question to solve
\[\sqrt{x+6}=6-2\sqrt{5-x}.........\left( 1 \right)\]
We see that there are two square roots $\sqrt{x+6},\sqrt{5-x}$. Since the argument for square roots is always positive we have-
\[\begin{align}
& x+6\ge 0\Rightarrow x\ge -6 \\
& 5-x\ge 0\Rightarrow 5\ge x \\
\end{align}\]
So the valid range of values for the solution of the given equation is $-6\le x\le 5\Rightarrow x\in \left[ -6,5 \right]$. Since square root function returns non-negative values we have
\[\begin{align}
& \sqrt{x+6}\ge 0 \\
& \Rightarrow 6-2\sqrt{5-x}\ge 0 \\
& \Rightarrow 6\ge 2\sqrt{5-x} \\
& \Rightarrow 3\ge \sqrt{5-x}....\left( 3 \right) \\
\end{align}\]
Let us rearrange the given equation with square roots at one side.
\[\sqrt{x+6}+2\sqrt{5-x}=6\]
We square both sides of above equation to have
\[\Rightarrow {{\left( \sqrt{x+6}+2\sqrt{5-x} \right)}^{2}}=36\]
We use the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ for $a=\sqrt{x+6},b=2\sqrt{5-x}$ in the above step to have
\[\begin{align}
& \Rightarrow x+6+4\left( 5-x \right)+2\sqrt{6+x}\cdot 2\sqrt{5-x}=36 \\
& \Rightarrow 26-3x+4\sqrt{6+x}\sqrt{5-x}=36 \\
& \Rightarrow \sqrt{6+x}\sqrt{5-x}=\dfrac{36-26+3x}{4} \\
& \Rightarrow \sqrt{6+x}\sqrt{5-x}=\dfrac{10+3x}{4} \\
\end{align}\]
We square both sides of above equation to have;
\[\begin{align}
& \Rightarrow {{\left( \sqrt{x+6}\sqrt{5-x} \right)}^{2}}=\dfrac{{{\left( 10+3x \right)}^{2}}}{{{4}^{2}}} \\
& \Rightarrow \left( x+6 \right)\left( 5-x \right)=\dfrac{100+60x+9{{x}^{2}}}{16} \\
\end{align}\]
We multiply the polynomials at the left hand side and then simplify to have;
\[\begin{align}
& \Rightarrow -{{x}^{2}}-x+30=\dfrac{100+60x+9{{x}^{2}}}{16} \\
& \Rightarrow -16{{x}^{2}}-16x+480=100+60x+9{{x}^{2}} \\
& \Rightarrow 25{{x}^{2}}+76x-380=0 \\
\end{align}\]
We note that the above equation is a quadratic equation of the type $a{{x}^{2}}+bx+c=0$. We find the roots of the quadratic equation as
\[\begin{align}
& x=\dfrac{-76\pm \sqrt{{{\left( -76 \right)}^{2}}-4\cdot 25\cdot \left( -380 \right)}}{2\cdot 25} \\
& \Rightarrow x=\dfrac{-76\pm \sqrt{43376}}{50} \\
& \Rightarrow x\simeq \dfrac{-76\pm 208}{50} \\
& \Rightarrow x\simeq \dfrac{-76+208}{50},\dfrac{-76-208}{50} \\
\end{align}\]
So approximately roots of the equation are
\[\begin{align}
& \Rightarrow x\simeq \dfrac{132}{50},\dfrac{-284}{50} \\
& \Rightarrow x\simeq 2.64,-5.84 \\
\end{align}\]
We see that both the obtained roots lie in the interval $\left[ -6,5 \right]$ . Let us check whether they satisfy condition (2) that is $3\ge \sqrt{5-x}$. We have
\[\begin{align}
& 3\ge \sqrt{5-2.64} \\
& 3<\sqrt{5-\left( -5\cdot 84 \right)}=\sqrt{10.84} \\
\end{align}\]
So the only solution valid for the equation is approximately $x=2.64$ and exactly is
\[x=\dfrac{-76+\sqrt{43376}}{50}=\dfrac{-76+4\sqrt{2711}}{50}=\dfrac{-38+2\sqrt{2711}}{25}\]
Note:
We note that we get real and unequal roots when discriminant $D={{b}^{2}}-4ac > 0$ and equal roots when $D={{b}^{2}}-4ac=0$. We get rational roots when $D$ is a perfect square. We note that $a\le b\Rightarrow \sqrt{a}\le \sqrt{b}$ and this why in this problem $\sqrt{9} < \sqrt{10.84}\Rightarrow 3 < \sqrt{10.84}$. We can find the square root of 43376 up to one digit in rough for valid range analysis.
Complete step by step answer:
We know that a square root function takes non-negative real numbers called arguments and returns non-negative real numbers. We are asked in the question to solve
\[\sqrt{x+6}=6-2\sqrt{5-x}.........\left( 1 \right)\]
We see that there are two square roots $\sqrt{x+6},\sqrt{5-x}$. Since the argument for square roots is always positive we have-
\[\begin{align}
& x+6\ge 0\Rightarrow x\ge -6 \\
& 5-x\ge 0\Rightarrow 5\ge x \\
\end{align}\]
So the valid range of values for the solution of the given equation is $-6\le x\le 5\Rightarrow x\in \left[ -6,5 \right]$. Since square root function returns non-negative values we have
\[\begin{align}
& \sqrt{x+6}\ge 0 \\
& \Rightarrow 6-2\sqrt{5-x}\ge 0 \\
& \Rightarrow 6\ge 2\sqrt{5-x} \\
& \Rightarrow 3\ge \sqrt{5-x}....\left( 3 \right) \\
\end{align}\]
Let us rearrange the given equation with square roots at one side.
\[\sqrt{x+6}+2\sqrt{5-x}=6\]
We square both sides of above equation to have
\[\Rightarrow {{\left( \sqrt{x+6}+2\sqrt{5-x} \right)}^{2}}=36\]
We use the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ for $a=\sqrt{x+6},b=2\sqrt{5-x}$ in the above step to have
\[\begin{align}
& \Rightarrow x+6+4\left( 5-x \right)+2\sqrt{6+x}\cdot 2\sqrt{5-x}=36 \\
& \Rightarrow 26-3x+4\sqrt{6+x}\sqrt{5-x}=36 \\
& \Rightarrow \sqrt{6+x}\sqrt{5-x}=\dfrac{36-26+3x}{4} \\
& \Rightarrow \sqrt{6+x}\sqrt{5-x}=\dfrac{10+3x}{4} \\
\end{align}\]
We square both sides of above equation to have;
\[\begin{align}
& \Rightarrow {{\left( \sqrt{x+6}\sqrt{5-x} \right)}^{2}}=\dfrac{{{\left( 10+3x \right)}^{2}}}{{{4}^{2}}} \\
& \Rightarrow \left( x+6 \right)\left( 5-x \right)=\dfrac{100+60x+9{{x}^{2}}}{16} \\
\end{align}\]
We multiply the polynomials at the left hand side and then simplify to have;
\[\begin{align}
& \Rightarrow -{{x}^{2}}-x+30=\dfrac{100+60x+9{{x}^{2}}}{16} \\
& \Rightarrow -16{{x}^{2}}-16x+480=100+60x+9{{x}^{2}} \\
& \Rightarrow 25{{x}^{2}}+76x-380=0 \\
\end{align}\]
We note that the above equation is a quadratic equation of the type $a{{x}^{2}}+bx+c=0$. We find the roots of the quadratic equation as
\[\begin{align}
& x=\dfrac{-76\pm \sqrt{{{\left( -76 \right)}^{2}}-4\cdot 25\cdot \left( -380 \right)}}{2\cdot 25} \\
& \Rightarrow x=\dfrac{-76\pm \sqrt{43376}}{50} \\
& \Rightarrow x\simeq \dfrac{-76\pm 208}{50} \\
& \Rightarrow x\simeq \dfrac{-76+208}{50},\dfrac{-76-208}{50} \\
\end{align}\]
So approximately roots of the equation are
\[\begin{align}
& \Rightarrow x\simeq \dfrac{132}{50},\dfrac{-284}{50} \\
& \Rightarrow x\simeq 2.64,-5.84 \\
\end{align}\]
We see that both the obtained roots lie in the interval $\left[ -6,5 \right]$ . Let us check whether they satisfy condition (2) that is $3\ge \sqrt{5-x}$. We have
\[\begin{align}
& 3\ge \sqrt{5-2.64} \\
& 3<\sqrt{5-\left( -5\cdot 84 \right)}=\sqrt{10.84} \\
\end{align}\]
So the only solution valid for the equation is approximately $x=2.64$ and exactly is
\[x=\dfrac{-76+\sqrt{43376}}{50}=\dfrac{-76+4\sqrt{2711}}{50}=\dfrac{-38+2\sqrt{2711}}{25}\]
Note:
We note that we get real and unequal roots when discriminant $D={{b}^{2}}-4ac > 0$ and equal roots when $D={{b}^{2}}-4ac=0$. We get rational roots when $D$ is a perfect square. We note that $a\le b\Rightarrow \sqrt{a}\le \sqrt{b}$ and this why in this problem $\sqrt{9} < \sqrt{10.84}\Rightarrow 3 < \sqrt{10.84}$. We can find the square root of 43376 up to one digit in rough for valid range analysis.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

