
How do you solve $\left| 2x-3 \right|=7$ ?
Answer
560.4k+ views
Hint: We recall the definition of absolute value function and the break point of absolute value function. We recall that the break point of $\left| ax+b \right|$ is the solution of $ax+b=0$ where the definition of absolute value function changes. We find the break point of $\left| 2x-3 \right|$ and solve accordingly.
Complete step by step solution:
We know that of absolute value function of modulus function denoted as $\left| x \right|$ returns a non-negative value without regard for the input of the functions. It is defined in piecewise manner as;
\[\left| x \right|=\left\{ \begin{matrix}
-x & \text{if }x<0\text{ } \\
x & \text{if }x\ge 0 \\
\end{matrix} \right.\]
We see that the function has a breakpoint at $x=0$ which means the absolute value function has different definitions for $x\in \left( -\infty ,0 \right)$ and for $x\in \left[ 0,\infty \right)$. If we define an absolute value function $\left| ax+b \right|$ for any real numbers $a,b$ then the breakpoint will be at the solution of $ax+b=0$ which is $x=\dfrac{-b}{a}$ because $\left| ax+b \right|$ has to return non-negative outputs and for that we have to define the function as
\[\left| x-a \right|=\left\{ \begin{matrix}
-\left( ax+b \right) & \text{if }x<\dfrac{-b}{a}\text{ } \\
ax+b & \text{if }x\ge \dfrac{b}{a} \\
\end{matrix} \right.\]
We are given the following equation in the question
\[\begin{align}
& \left| 2x-3 \right|=7 \\
& \Rightarrow \left| 2x+\left( -3 \right) \right|=7 \\
\end{align}\]
We see that in the left hand side of the above equation the absolute value function is in the form $\left| ax+b \right|$ with $a=2,b=-3$. So the break point is
\[x=\dfrac{-b}{a}=\dfrac{-\left( -3 \right)}{2}=\dfrac{3}{2}\]
So the definition of the given absolute value function is
\[\left| 2x-3 \right|=\left\{ \begin{matrix}
-\left( 2x-3 \right) & \text{if }x<\dfrac{3}{2}\text{ } \\
2x-3 & \text{if }x\ge \dfrac{3}{2} \\
\end{matrix} \right.\]
So we get linear equations to solve
\[\begin{align}
& -\left( 2x-3 \right)=7\text{ if }x<\dfrac{3}{2}............\left( 1 \right) \\
& 2x-3=7\text{ if }x\ge \dfrac{3}{2}.......\left( 2 \right) \\
\end{align}\]
We solve equation (1) to have
\[\begin{align}
& -\left( 2x-3 \right)=7 \\
& \Rightarrow -2x+3=7 \\
& \Rightarrow -2x=4 \\
& \Rightarrow x=-2 \\
\end{align}\]
We see that above solution $x=-2$ satisfies the condition $x<\dfrac{3}{2}$.We solve equation (2) to have ;
\[\begin{align}
& 2x-3=7 \\
& \Rightarrow 2x=10 \\
& \Rightarrow x=5 \\
\end{align}\]
We see that the above solution satisfies $x=5$ the condition $x\ge \dfrac{3}{2}$. So we got a solution to have $x=-2,5$.
Note: We can alternatively by using the property $\left| a \right|=b\Rightarrow a=\pm b$ to have $2x-3=\pm 7$ from where we can proceed to solve linear equations. The break point of $\left| x-a \right|$ is $x=a$. We should remember that a piecewise defined function has different definitions in different intervals. In absolute value function if $x=a$ is the break point it has two different definitions in $\left( -\infty ,a \right),\left( a,\infty \right)$.
Complete step by step solution:
We know that of absolute value function of modulus function denoted as $\left| x \right|$ returns a non-negative value without regard for the input of the functions. It is defined in piecewise manner as;
\[\left| x \right|=\left\{ \begin{matrix}
-x & \text{if }x<0\text{ } \\
x & \text{if }x\ge 0 \\
\end{matrix} \right.\]
We see that the function has a breakpoint at $x=0$ which means the absolute value function has different definitions for $x\in \left( -\infty ,0 \right)$ and for $x\in \left[ 0,\infty \right)$. If we define an absolute value function $\left| ax+b \right|$ for any real numbers $a,b$ then the breakpoint will be at the solution of $ax+b=0$ which is $x=\dfrac{-b}{a}$ because $\left| ax+b \right|$ has to return non-negative outputs and for that we have to define the function as
\[\left| x-a \right|=\left\{ \begin{matrix}
-\left( ax+b \right) & \text{if }x<\dfrac{-b}{a}\text{ } \\
ax+b & \text{if }x\ge \dfrac{b}{a} \\
\end{matrix} \right.\]
We are given the following equation in the question
\[\begin{align}
& \left| 2x-3 \right|=7 \\
& \Rightarrow \left| 2x+\left( -3 \right) \right|=7 \\
\end{align}\]
We see that in the left hand side of the above equation the absolute value function is in the form $\left| ax+b \right|$ with $a=2,b=-3$. So the break point is
\[x=\dfrac{-b}{a}=\dfrac{-\left( -3 \right)}{2}=\dfrac{3}{2}\]
So the definition of the given absolute value function is
\[\left| 2x-3 \right|=\left\{ \begin{matrix}
-\left( 2x-3 \right) & \text{if }x<\dfrac{3}{2}\text{ } \\
2x-3 & \text{if }x\ge \dfrac{3}{2} \\
\end{matrix} \right.\]
So we get linear equations to solve
\[\begin{align}
& -\left( 2x-3 \right)=7\text{ if }x<\dfrac{3}{2}............\left( 1 \right) \\
& 2x-3=7\text{ if }x\ge \dfrac{3}{2}.......\left( 2 \right) \\
\end{align}\]
We solve equation (1) to have
\[\begin{align}
& -\left( 2x-3 \right)=7 \\
& \Rightarrow -2x+3=7 \\
& \Rightarrow -2x=4 \\
& \Rightarrow x=-2 \\
\end{align}\]
We see that above solution $x=-2$ satisfies the condition $x<\dfrac{3}{2}$.We solve equation (2) to have ;
\[\begin{align}
& 2x-3=7 \\
& \Rightarrow 2x=10 \\
& \Rightarrow x=5 \\
\end{align}\]
We see that the above solution satisfies $x=5$ the condition $x\ge \dfrac{3}{2}$. So we got a solution to have $x=-2,5$.
Note: We can alternatively by using the property $\left| a \right|=b\Rightarrow a=\pm b$ to have $2x-3=\pm 7$ from where we can proceed to solve linear equations. The break point of $\left| x-a \right|$ is $x=a$. We should remember that a piecewise defined function has different definitions in different intervals. In absolute value function if $x=a$ is the break point it has two different definitions in $\left( -\infty ,a \right),\left( a,\infty \right)$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

