
How do you solve $\left| 2x-3 \right|=7$ ?
Answer
498k+ views
Hint: We recall the definition of absolute value function and the break point of absolute value function. We recall that the break point of $\left| ax+b \right|$ is the solution of $ax+b=0$ where the definition of absolute value function changes. We find the break point of $\left| 2x-3 \right|$ and solve accordingly.
Complete step by step solution:
We know that of absolute value function of modulus function denoted as $\left| x \right|$ returns a non-negative value without regard for the input of the functions. It is defined in piecewise manner as;
\[\left| x \right|=\left\{ \begin{matrix}
-x & \text{if }x<0\text{ } \\
x & \text{if }x\ge 0 \\
\end{matrix} \right.\]
We see that the function has a breakpoint at $x=0$ which means the absolute value function has different definitions for $x\in \left( -\infty ,0 \right)$ and for $x\in \left[ 0,\infty \right)$. If we define an absolute value function $\left| ax+b \right|$ for any real numbers $a,b$ then the breakpoint will be at the solution of $ax+b=0$ which is $x=\dfrac{-b}{a}$ because $\left| ax+b \right|$ has to return non-negative outputs and for that we have to define the function as
\[\left| x-a \right|=\left\{ \begin{matrix}
-\left( ax+b \right) & \text{if }x<\dfrac{-b}{a}\text{ } \\
ax+b & \text{if }x\ge \dfrac{b}{a} \\
\end{matrix} \right.\]
We are given the following equation in the question
\[\begin{align}
& \left| 2x-3 \right|=7 \\
& \Rightarrow \left| 2x+\left( -3 \right) \right|=7 \\
\end{align}\]
We see that in the left hand side of the above equation the absolute value function is in the form $\left| ax+b \right|$ with $a=2,b=-3$. So the break point is
\[x=\dfrac{-b}{a}=\dfrac{-\left( -3 \right)}{2}=\dfrac{3}{2}\]
So the definition of the given absolute value function is
\[\left| 2x-3 \right|=\left\{ \begin{matrix}
-\left( 2x-3 \right) & \text{if }x<\dfrac{3}{2}\text{ } \\
2x-3 & \text{if }x\ge \dfrac{3}{2} \\
\end{matrix} \right.\]
So we get linear equations to solve
\[\begin{align}
& -\left( 2x-3 \right)=7\text{ if }x<\dfrac{3}{2}............\left( 1 \right) \\
& 2x-3=7\text{ if }x\ge \dfrac{3}{2}.......\left( 2 \right) \\
\end{align}\]
We solve equation (1) to have
\[\begin{align}
& -\left( 2x-3 \right)=7 \\
& \Rightarrow -2x+3=7 \\
& \Rightarrow -2x=4 \\
& \Rightarrow x=-2 \\
\end{align}\]
We see that above solution $x=-2$ satisfies the condition $x<\dfrac{3}{2}$.We solve equation (2) to have ;
\[\begin{align}
& 2x-3=7 \\
& \Rightarrow 2x=10 \\
& \Rightarrow x=5 \\
\end{align}\]
We see that the above solution satisfies $x=5$ the condition $x\ge \dfrac{3}{2}$. So we got a solution to have $x=-2,5$.
Note: We can alternatively by using the property $\left| a \right|=b\Rightarrow a=\pm b$ to have $2x-3=\pm 7$ from where we can proceed to solve linear equations. The break point of $\left| x-a \right|$ is $x=a$. We should remember that a piecewise defined function has different definitions in different intervals. In absolute value function if $x=a$ is the break point it has two different definitions in $\left( -\infty ,a \right),\left( a,\infty \right)$.
Complete step by step solution:
We know that of absolute value function of modulus function denoted as $\left| x \right|$ returns a non-negative value without regard for the input of the functions. It is defined in piecewise manner as;
\[\left| x \right|=\left\{ \begin{matrix}
-x & \text{if }x<0\text{ } \\
x & \text{if }x\ge 0 \\
\end{matrix} \right.\]
We see that the function has a breakpoint at $x=0$ which means the absolute value function has different definitions for $x\in \left( -\infty ,0 \right)$ and for $x\in \left[ 0,\infty \right)$. If we define an absolute value function $\left| ax+b \right|$ for any real numbers $a,b$ then the breakpoint will be at the solution of $ax+b=0$ which is $x=\dfrac{-b}{a}$ because $\left| ax+b \right|$ has to return non-negative outputs and for that we have to define the function as
\[\left| x-a \right|=\left\{ \begin{matrix}
-\left( ax+b \right) & \text{if }x<\dfrac{-b}{a}\text{ } \\
ax+b & \text{if }x\ge \dfrac{b}{a} \\
\end{matrix} \right.\]
We are given the following equation in the question
\[\begin{align}
& \left| 2x-3 \right|=7 \\
& \Rightarrow \left| 2x+\left( -3 \right) \right|=7 \\
\end{align}\]
We see that in the left hand side of the above equation the absolute value function is in the form $\left| ax+b \right|$ with $a=2,b=-3$. So the break point is
\[x=\dfrac{-b}{a}=\dfrac{-\left( -3 \right)}{2}=\dfrac{3}{2}\]
So the definition of the given absolute value function is
\[\left| 2x-3 \right|=\left\{ \begin{matrix}
-\left( 2x-3 \right) & \text{if }x<\dfrac{3}{2}\text{ } \\
2x-3 & \text{if }x\ge \dfrac{3}{2} \\
\end{matrix} \right.\]
So we get linear equations to solve
\[\begin{align}
& -\left( 2x-3 \right)=7\text{ if }x<\dfrac{3}{2}............\left( 1 \right) \\
& 2x-3=7\text{ if }x\ge \dfrac{3}{2}.......\left( 2 \right) \\
\end{align}\]
We solve equation (1) to have
\[\begin{align}
& -\left( 2x-3 \right)=7 \\
& \Rightarrow -2x+3=7 \\
& \Rightarrow -2x=4 \\
& \Rightarrow x=-2 \\
\end{align}\]
We see that above solution $x=-2$ satisfies the condition $x<\dfrac{3}{2}$.We solve equation (2) to have ;
\[\begin{align}
& 2x-3=7 \\
& \Rightarrow 2x=10 \\
& \Rightarrow x=5 \\
\end{align}\]
We see that the above solution satisfies $x=5$ the condition $x\ge \dfrac{3}{2}$. So we got a solution to have $x=-2,5$.
Note: We can alternatively by using the property $\left| a \right|=b\Rightarrow a=\pm b$ to have $2x-3=\pm 7$ from where we can proceed to solve linear equations. The break point of $\left| x-a \right|$ is $x=a$. We should remember that a piecewise defined function has different definitions in different intervals. In absolute value function if $x=a$ is the break point it has two different definitions in $\left( -\infty ,a \right),\left( a,\infty \right)$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
