Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

How do you solve cos $38 = \dfrac{{45}}{x}$?

seo-qna
Last updated date: 17th Jun 2024
Total views: 373.8k
Views today: 4.73k
Answer
VerifiedVerified
373.8k+ views
Hint: In arithmetic, the cosine work (cos) is a capacity that relates the inside point of a triangle to the length of its sides. The cosine work, alongside the sine and digression work are the three essential geometrical capacities.

Complete step by step answer:
Given$ \Rightarrow $cos$38 = \dfrac{{45}}{x}$
Cos$38 = 0.788010753$
$\eqalign{
  & \Rightarrow \dfrac{{\cos }}{1} = \dfrac{{45}}{x} \cr
  & \Rightarrow \cos 38x = 45 \cr
  & \Rightarrow 0.788010753 \times x = 45 \cr
  & \Rightarrow x = \dfrac{{45}}{{0.788010753}} \cr
  & \therefore x = 57.10581972 \cr} $

Note: Check the answer by substituting $x = 57.10581972$ in question.
$\eqalign{
  & \Rightarrow \operatorname{Cos} 38 = \dfrac{{45}}{x} \cr
  & \Rightarrow \cos 38 = \dfrac{{45}}{{57.10581972}} \cr
  & \Rightarrow 0.788010753 \cr} $
And cos$38 = 0.788010753$