Answer
Verified
422.4k+ views
Hint: We will find the value of y from the first equation and then put it in the second equation. After that we will get the value of x and putting that in the y we found, we get the answer.
Complete step by step solution:
We are given that we are required to solve $7x+2y=-19$ and $-x+2y=21$.
We will use substitution to solve the same.
Let us term the given equation $7x+2y=-19$ as the equation number 1 and the given equation $-x+2y=21$ as equation number 2.
Taking the $7x$ from addition in the left hand side to subtraction in right hand side in the first equation, we will then obtain the following equation:-
$ \Rightarrow 2y=-19–7x$
Dividing both the sides of this equation by 2, we will then obtain the following equation:-
$ \Rightarrow y = - \dfrac{1}{2}(19 + 7x)$ …………..(3)
We can now put this in equation number 2.
We will then obtain the following equation:-
$ \Rightarrow - x + 2\left\{ { - \dfrac{1}{2}\left( {19 + 7x} \right)} \right\} = 21$
Simplifying the terms, we will then obtain the following equation:-
$ \Rightarrow - x - \left( {19 + 7x} \right) = 21$
Opening up the bracket, we will then obtain the following equation:-
$ \Rightarrow - x - 19 - 7x = 21$
Now, we will club the constant terms and the terms with x, we will then obtain the following equation:-
$ \Rightarrow - 8x = 40$
Simplifying this further, we will then obtain the following equation:-
$ \Rightarrow x = - 5$
Thus, we get: $x = - 5$
Putting this in equation number 3, we will then obtain the following equation:-
$ \Rightarrow y = - \dfrac{1}{2}\left\{ {19 - 7\left( 5 \right)} \right\}$
Simplifying the calculations, we will then obtain the following equation:-
$ \Rightarrow y = 8$
Hence, the answer is $x = - 5$ and $y = 8$.
Note: Alternate Way:
We are given that we are required to solve $7x + 2y = - 19$ …………(1) and $- x + 2y = 21$ ………(2)
Subtracting the equation number 1 from equation number 2, we will then obtain the following equation:-
$ \Rightarrow \left\{ { - {\text{ }}x + 2y} \right\}-\left\{ {7x + 2y} \right\} = 21-\left( { - 19} \right)$
Simplifying the equation, we will then obtain the following equation:-
$ \Rightarrow - 8x = 40$
Thus, we have $x = - 5$
Therefore, by putting this in equation number 1, we get $y = 8$.
Hence, the answer is $x = - 5$ and $y = 8$.
Complete step by step solution:
We are given that we are required to solve $7x+2y=-19$ and $-x+2y=21$.
We will use substitution to solve the same.
Let us term the given equation $7x+2y=-19$ as the equation number 1 and the given equation $-x+2y=21$ as equation number 2.
Taking the $7x$ from addition in the left hand side to subtraction in right hand side in the first equation, we will then obtain the following equation:-
$ \Rightarrow 2y=-19–7x$
Dividing both the sides of this equation by 2, we will then obtain the following equation:-
$ \Rightarrow y = - \dfrac{1}{2}(19 + 7x)$ …………..(3)
We can now put this in equation number 2.
We will then obtain the following equation:-
$ \Rightarrow - x + 2\left\{ { - \dfrac{1}{2}\left( {19 + 7x} \right)} \right\} = 21$
Simplifying the terms, we will then obtain the following equation:-
$ \Rightarrow - x - \left( {19 + 7x} \right) = 21$
Opening up the bracket, we will then obtain the following equation:-
$ \Rightarrow - x - 19 - 7x = 21$
Now, we will club the constant terms and the terms with x, we will then obtain the following equation:-
$ \Rightarrow - 8x = 40$
Simplifying this further, we will then obtain the following equation:-
$ \Rightarrow x = - 5$
Thus, we get: $x = - 5$
Putting this in equation number 3, we will then obtain the following equation:-
$ \Rightarrow y = - \dfrac{1}{2}\left\{ {19 - 7\left( 5 \right)} \right\}$
Simplifying the calculations, we will then obtain the following equation:-
$ \Rightarrow y = 8$
Hence, the answer is $x = - 5$ and $y = 8$.
Note: Alternate Way:
We are given that we are required to solve $7x + 2y = - 19$ …………(1) and $- x + 2y = 21$ ………(2)
Subtracting the equation number 1 from equation number 2, we will then obtain the following equation:-
$ \Rightarrow \left\{ { - {\text{ }}x + 2y} \right\}-\left\{ {7x + 2y} \right\} = 21-\left( { - 19} \right)$
Simplifying the equation, we will then obtain the following equation:-
$ \Rightarrow - 8x = 40$
Thus, we have $x = - 5$
Therefore, by putting this in equation number 1, we get $y = 8$.
Hence, the answer is $x = - 5$ and $y = 8$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE