Answer
Verified
400.5k+ views
Hint: In this question, we are given a number whose square root we have to find. We get the square of a number when a number is multiplied by itself. Thus, the square root is defined as the number whose square we found. Now, we have to find the square root of the number 184, that is, we have to find the number whose square is equal to 184. So for that, we write the number 184 as a product of its prime factors and then see if it can be written as a square of any number. Thus, after writing the given number as a square of another number, we can find out its square root.
Complete step by step solution:
On the factorization of 184, we get –
$
184 = 2 \times 2 \times 2 \times 23 \\
\Rightarrow 184 = {(2)^2} \times 46 \\
$
Thus, $\sqrt {184} = 2\sqrt {46} $
Now, 46 cannot be written as a square of any integer, so we can find the square root of 46 by the calculator.
Hence, the square root of 184 is $ \pm 2\sqrt {46} $ or $ \pm 13.56466$ .
Note: In this question, we are given a simple number but in some problems, we may get asked to find the square root of a fraction or a negative number. For finding the square root of a fraction, we will first simplify it by canceling out the common factors and then find its square root. For finding the square root of a negative number we will write the number as a product of the positive number and -1, we have supposed $\sqrt { - 1} $ to be equal to iota denoted by $i$ . Thus $\sqrt { - {n^2}} = \pm ni$
Complete step by step solution:
On the factorization of 184, we get –
$
184 = 2 \times 2 \times 2 \times 23 \\
\Rightarrow 184 = {(2)^2} \times 46 \\
$
Thus, $\sqrt {184} = 2\sqrt {46} $
Now, 46 cannot be written as a square of any integer, so we can find the square root of 46 by the calculator.
Hence, the square root of 184 is $ \pm 2\sqrt {46} $ or $ \pm 13.56466$ .
Note: In this question, we are given a simple number but in some problems, we may get asked to find the square root of a fraction or a negative number. For finding the square root of a fraction, we will first simplify it by canceling out the common factors and then find its square root. For finding the square root of a negative number we will write the number as a product of the positive number and -1, we have supposed $\sqrt { - 1} $ to be equal to iota denoted by $i$ . Thus $\sqrt { - {n^2}} = \pm ni$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Who was the founder of muslim league A Mohmmad ali class 10 social science CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers