
How do you graph \[y=\sqrt{x-4}\]?
Answer
540.3k+ views
Hint: First define the given function y by finding its domain, i.e., the values of x for which the function will be defined. To do this, substitute the term inside the square root greater than or equal to 0. Now, to draw the graph, square both sides of the equation and draw the graph of the parabola obtained. Remove the part of the graph below x – axis to get the answer.
Complete step-by-step solution:
Here, we have been provided with the function \[y=\sqrt{x-4}\] and we are asked to draw its graph. But first we need to find the domain of the function.
Now, the domain of a function \[f\left( x \right)\] is the set of values of x for which the function \[f\left( x \right)\] is defined. In the above question, for the function y to be decided we must have the term inside the square root greater than 0. It can be equal to 0 also but not less than 0. So, we must have,
\[\begin{align}
& \Rightarrow x-4\ge 0 \\
& \Rightarrow x\ge 4 \\
\end{align}\]
\[\Rightarrow \] Domain \[\in \left[ 4,\infty \right)\]
Now, on squaring both sides of the given equation, we get,
\[\Rightarrow {{y}^{2}}=x-4\]
Clearly, we can see that the above relation is a parabola. Here, if we will assume \[{{y}^{2}}=f\left( x \right)=x\] then we can say that the above relation can be written as \[{{y}^{2}}=x-4=f\left( x \right)+c\], where c = -4 units. So, the graph of \[{{y}^{2}}=x-4\] will be shifted 4 units to the right in comparison to the graph of \[{{y}^{2}}=x\]. So, the graph of \[{{y}^{2}}=x-4\] can be given as: -
Now, the original equation is \[y=\sqrt{x-4}\] whose graph we need to draw. As we can see that in the R.H.S. we have the positive square root, so the value of y cannot be negative. That means we need to remove that part of the parabola \[{{y}^{2}}=x-4\] in which y is negative, so the part of the graph below the x – axis needs to be removed. Therefore, we have,
Note: One may note that if we will take values of x less than 4 then the function will become a complex function for which we used another type of plane called ‘argand plane’. Complex functions are not drawn on a cartesian plane. Remember that if you know the graph of \[y=f\left( x \right)\] then you can easily draw the graphs of function \[y=f\left( x \right)+c\]. Here, if ‘c’ is positive then the graph is shifted horizontally left and if ‘c’ is negative then we shift the graph horizontally right.
Complete step-by-step solution:
Here, we have been provided with the function \[y=\sqrt{x-4}\] and we are asked to draw its graph. But first we need to find the domain of the function.
Now, the domain of a function \[f\left( x \right)\] is the set of values of x for which the function \[f\left( x \right)\] is defined. In the above question, for the function y to be decided we must have the term inside the square root greater than 0. It can be equal to 0 also but not less than 0. So, we must have,
\[\begin{align}
& \Rightarrow x-4\ge 0 \\
& \Rightarrow x\ge 4 \\
\end{align}\]
\[\Rightarrow \] Domain \[\in \left[ 4,\infty \right)\]
Now, on squaring both sides of the given equation, we get,
\[\Rightarrow {{y}^{2}}=x-4\]
Clearly, we can see that the above relation is a parabola. Here, if we will assume \[{{y}^{2}}=f\left( x \right)=x\] then we can say that the above relation can be written as \[{{y}^{2}}=x-4=f\left( x \right)+c\], where c = -4 units. So, the graph of \[{{y}^{2}}=x-4\] will be shifted 4 units to the right in comparison to the graph of \[{{y}^{2}}=x\]. So, the graph of \[{{y}^{2}}=x-4\] can be given as: -
Now, the original equation is \[y=\sqrt{x-4}\] whose graph we need to draw. As we can see that in the R.H.S. we have the positive square root, so the value of y cannot be negative. That means we need to remove that part of the parabola \[{{y}^{2}}=x-4\] in which y is negative, so the part of the graph below the x – axis needs to be removed. Therefore, we have,
Note: One may note that if we will take values of x less than 4 then the function will become a complex function for which we used another type of plane called ‘argand plane’. Complex functions are not drawn on a cartesian plane. Remember that if you know the graph of \[y=f\left( x \right)\] then you can easily draw the graphs of function \[y=f\left( x \right)+c\]. Here, if ‘c’ is positive then the graph is shifted horizontally left and if ‘c’ is negative then we shift the graph horizontally right.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

