
How do you graph $y = \sin 4x - 4\sin x$?
Answer
506.4k+ views
Hint: Since this graph is quite complex in the sense that we do not know any of its property, we will try to plot a few points of it find its periodicity and then with help of a graphing calculator see what the graph actually looks like. The first task ahead of us would be to find the periodicity of the given graph, since both of the term of the expression
$y = \sin 4x - 4\sin x$
Will have different periods, the lcm of the period of both the graphs will be the period of the compound oscillation of this graph , we will keep that in mind . The period of the $\sin 4x$ will be $\dfrac{\pi }{2}$ while the period of $4\sin x$ or particularly $\sin x$ since $4$ is constant will be $2\pi $ as it is a sine function we will find the lcm and get value of the period of complete function, then put few points to get our values.
Complete step by step solution:
The given function,
$y = \sin 4x - 4\sin x$
Is a complex function, we have to first find periodicity . The period of the $\sin 4x$ will be $\dfrac{\pi }{2}$while the period of $4\sin x$ or particularly $\sin x$ since $4$ is constant will be $2\pi $ as it is a sine function we will find the lcm and get value of the period of complete function the lcm will be $2\pi $and hence the period will be $2\pi $.
Also we put few values and get the corresponding value the function gives,
Lets put $ - \pi ,\pi , - 2\pi ,2\pi $,
We get \[ - 4.0,{\text{ }}4.0,{\text{ }} - 2.0,{\text{ }}2.0\]
We will put these values to plot a graph we will now see the graph from a calculator,
Note:
If a complex function is given then the period will be the LCM of periodicity all the terms in that given function.
$y = \sin 4x - 4\sin x$
Will have different periods, the lcm of the period of both the graphs will be the period of the compound oscillation of this graph , we will keep that in mind . The period of the $\sin 4x$ will be $\dfrac{\pi }{2}$ while the period of $4\sin x$ or particularly $\sin x$ since $4$ is constant will be $2\pi $ as it is a sine function we will find the lcm and get value of the period of complete function, then put few points to get our values.
Complete step by step solution:
The given function,
$y = \sin 4x - 4\sin x$
Is a complex function, we have to first find periodicity . The period of the $\sin 4x$ will be $\dfrac{\pi }{2}$while the period of $4\sin x$ or particularly $\sin x$ since $4$ is constant will be $2\pi $ as it is a sine function we will find the lcm and get value of the period of complete function the lcm will be $2\pi $and hence the period will be $2\pi $.
Also we put few values and get the corresponding value the function gives,
Lets put $ - \pi ,\pi , - 2\pi ,2\pi $,
We get \[ - 4.0,{\text{ }}4.0,{\text{ }} - 2.0,{\text{ }}2.0\]
We will put these values to plot a graph we will now see the graph from a calculator,
Note:
If a complex function is given then the period will be the LCM of periodicity all the terms in that given function.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Discuss the various forms of bacteria class 11 biology CBSE

What is Environment class 11 chemistry CBSE

10 examples of diffusion in everyday life

Give four adaptations shown by flowers pollinated by class 11 biology CBSE

