
How do you graph \[y = 4x - 2\]?
Answer
525.3k+ views
Hint: To solve this we need to give the values of ‘x’ and we can find the values of ‘y’. Otherwise we can find the coordinate of the given equation lying on the line of x- axis, we can find this by substituting the value of ‘y’ is equal to zero (x-intercept). Similarly we can find the coordinate of the equation lying on the line of y- axis, we can find this by substituting the value of ‘x’ equal to zero (y-intercept).
Complete step-by-step solution:
Given, \[y = 4x - 2\].
To find the x-intercept. That is the value of ‘x’ at\[y = 0\]. Substituting this in the given equation. We have,
\[0 = 4x - 2\]
\[4x = 2\]
Divide by 4 on both sides,
\[x = \dfrac{2}{4}\]
\[x = \dfrac{1}{2}\]
\[x = 0.5\]
Thus we have a coordinate of the equation which lies on the line of x-axis. The coordinate is \[(0.5,0)\].
To find the y-intercept. That is the value of ‘y’ at \[x = 0\]. Substituting this in the given equation we have,
\[y = 4(0) - 2\]
\[y = - 2\].
Thus we have a coordinate of the equation which lies on the line of y-axis. The coordinate is \[(0, - 2)\].
Thus we have the coordinates \[(0.5,0)\] and \[(0, - 2)\]. This is enough to draw the graph.
Let’s plot a graph for this coordinates,
We take scale x-axis= 1 unit = 1 units; y-axis= 1 unit = 1 units
All we did was expand the line touching the coordinates \[(0.5,0)\] and \[(0, - 2)\] by a straight line.
Using the graph we have found out other coordinates that are \[( - 1, - 6),\] and \[(1,2)\]
Note: Intercept method is the easy and more accurate method to draw the graph of any equation. If the intercepts are zero then the given equation is passing through the origin and we find the coordinate points by giving the random values like 1, 2, 3,… to ‘x’ we find the corresponding value of ‘y’. Then with the obtained coordinate point we draw the graph ‘x’ versus ‘y’ as we did in above.
Complete step-by-step solution:
Given, \[y = 4x - 2\].
To find the x-intercept. That is the value of ‘x’ at\[y = 0\]. Substituting this in the given equation. We have,
\[0 = 4x - 2\]
\[4x = 2\]
Divide by 4 on both sides,
\[x = \dfrac{2}{4}\]
\[x = \dfrac{1}{2}\]
\[x = 0.5\]
Thus we have a coordinate of the equation which lies on the line of x-axis. The coordinate is \[(0.5,0)\].
To find the y-intercept. That is the value of ‘y’ at \[x = 0\]. Substituting this in the given equation we have,
\[y = 4(0) - 2\]
\[y = - 2\].
Thus we have a coordinate of the equation which lies on the line of y-axis. The coordinate is \[(0, - 2)\].
Thus we have the coordinates \[(0.5,0)\] and \[(0, - 2)\]. This is enough to draw the graph.
Let’s plot a graph for this coordinates,
We take scale x-axis= 1 unit = 1 units; y-axis= 1 unit = 1 units
All we did was expand the line touching the coordinates \[(0.5,0)\] and \[(0, - 2)\] by a straight line.
Using the graph we have found out other coordinates that are \[( - 1, - 6),\] and \[(1,2)\]
Note: Intercept method is the easy and more accurate method to draw the graph of any equation. If the intercepts are zero then the given equation is passing through the origin and we find the coordinate points by giving the random values like 1, 2, 3,… to ‘x’ we find the corresponding value of ‘y’. Then with the obtained coordinate point we draw the graph ‘x’ versus ‘y’ as we did in above.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

State and prove the Pythagoras theorem-class-10-maths-CBSE

State BPT theorem and prove it class 10 maths CBSE

What is the minimum age for fighting the election in class 10 social science CBSE

Describe the Salient Features of Indian Economy

The slogan Jai Hind was given by A Lal Bahadur Shastri class 10 social science CBSE

