
How do you graph $y = 3\sin 2x$ ?
Answer
556.8k+ views
Hint: We are given a function of sine that we have to plot on the graph. For plotting any function on the graph, we first convert the given function to the standard form and then compare it with the standard equation, this way we can find out how the graph should be plotted. The standard form of the sine equation is $y = A\sin (Bx + C) + D$ .
Complete step by step solution:
Comparing $y = 3\sin 2x$ with the standard form $y = A\sin (Bx + C) + D$ , we get –
$A = 3,\,B = 2,\,C = 0\,and\,D = 0$
Thus, the given sine function has peak values at 3 and -3, that is, it oscillates between 3 and -3 and the given sine function completes two oscillations between 0 and $2\pi $ , but for plotting the graph, we have to find out the period of the function. Period of a sine function is –
$
p = \dfrac{{2\pi }}{B} \\
\Rightarrow p = \dfrac{{2\pi }}{2} = \pi \\
$
That is the given function repeats the oscillation after every $\pi $ radians, it completes 1 oscillation in the interval 0 to $\pi $ .
Now, We know all the quantities for plotting the graph of the given function, so the graph of $y = 3\sin 2x$ is plotted as follows –
Note: We know that the general form of the sine function is $y = A\sin (Bx + C) + D$ where
- A is the amplitude, that is, A tells us the value of the peaks of the function.
- B is the frequency, that is, B tells us the number of oscillations a function does in a fixed interval.
- The horizontal and vertical shift of a function is denoted by C and D respectively. The value of C and D is zero for the given function, so there is no horizontal or vertical shift.
Complete step by step solution:
Comparing $y = 3\sin 2x$ with the standard form $y = A\sin (Bx + C) + D$ , we get –
$A = 3,\,B = 2,\,C = 0\,and\,D = 0$
Thus, the given sine function has peak values at 3 and -3, that is, it oscillates between 3 and -3 and the given sine function completes two oscillations between 0 and $2\pi $ , but for plotting the graph, we have to find out the period of the function. Period of a sine function is –
$
p = \dfrac{{2\pi }}{B} \\
\Rightarrow p = \dfrac{{2\pi }}{2} = \pi \\
$
That is the given function repeats the oscillation after every $\pi $ radians, it completes 1 oscillation in the interval 0 to $\pi $ .
Now, We know all the quantities for plotting the graph of the given function, so the graph of $y = 3\sin 2x$ is plotted as follows –
Note: We know that the general form of the sine function is $y = A\sin (Bx + C) + D$ where
- A is the amplitude, that is, A tells us the value of the peaks of the function.
- B is the frequency, that is, B tells us the number of oscillations a function does in a fixed interval.
- The horizontal and vertical shift of a function is denoted by C and D respectively. The value of C and D is zero for the given function, so there is no horizontal or vertical shift.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

