
How do you graph $r=1+2\sin \theta $ ?
Answer
530.1k+ views
Hint: For getting the graph of the given question, we will have to apply the value of one variable for getting the value of another variable. Since, in the question, there are two variables $r$ and $\theta $ . So, we will put the value for $\theta $ and after solving the equation, we will get the value of $r$ . Then, after using these values in the graph that will be the representative of the equation.
Complete step by step solution:
Since, the given equation that will help us to get the graph as:
$\Rightarrow r=1+2\sin \theta $
Since, $\theta $ represents the angle. So, we will put the value of that angle that will help us to get the value of $\sin \theta $ easily.
Here, we will put the value for $\theta $ so that we can get the value of $r$ as:
Let us put $\theta =0{}^\circ $ in the equation as:
$\Rightarrow r=1+2\sin 0{}^\circ $
$\Rightarrow r=1+2\times 0$
$\Rightarrow r=1+0$
$\Rightarrow r=1$
Now, let us $\theta =30{}^\circ $ in the question as:
$\Rightarrow r=1+2\sin 30{}^\circ $
$\Rightarrow r=1+2\times \dfrac{1}{2}$
$\Rightarrow r=1+1$
$\Rightarrow r=2$
Here, let the value of $\theta =45{}^\circ $
$\Rightarrow r=1+2\sin 45{}^\circ $
$\Rightarrow r=1+2\times \dfrac{1}{\sqrt{2}}$
$\Rightarrow r=1+\sqrt{2}$
$\Rightarrow r=1+1.4$
$\Rightarrow r=2.4$
Now, let the value for $\theta =60{}^\circ $
$\Rightarrow r=1+2\sin 60{}^\circ $
$\Rightarrow r=1+2\times \dfrac{\sqrt{3}}{2}$
$\Rightarrow r=1+\sqrt{3}$
$\Rightarrow r=1+1.7$
$\Rightarrow r=2.7$
Now, assume the value of variable $\theta =90{}^\circ $
$\Rightarrow r=1+2\sin 90{}^\circ $
$\Rightarrow r=1+2\times 1$
$\Rightarrow r=1+2$
$\Rightarrow r=3$
Here, we will make the table for these variables so that we can easily get the graph as:
Now, we got some values for $\theta $ and $r$ . So, the graphical representation will be as:
Note: Here, we will check if the solution of the equation is correct or not by putting the obtained values of $r$ and evaluating the values of $\theta $ as:
Complete step by step solution:
Since, the given equation that will help us to get the graph as:
$\Rightarrow r=1+2\sin \theta $
Since, $\theta $ represents the angle. So, we will put the value of that angle that will help us to get the value of $\sin \theta $ easily.
Here, we will put the value for $\theta $ so that we can get the value of $r$ as:
Let us put $\theta =0{}^\circ $ in the equation as:
$\Rightarrow r=1+2\sin 0{}^\circ $
$\Rightarrow r=1+2\times 0$
$\Rightarrow r=1+0$
$\Rightarrow r=1$
Now, let us $\theta =30{}^\circ $ in the question as:
$\Rightarrow r=1+2\sin 30{}^\circ $
$\Rightarrow r=1+2\times \dfrac{1}{2}$
$\Rightarrow r=1+1$
$\Rightarrow r=2$
Here, let the value of $\theta =45{}^\circ $
$\Rightarrow r=1+2\sin 45{}^\circ $
$\Rightarrow r=1+2\times \dfrac{1}{\sqrt{2}}$
$\Rightarrow r=1+\sqrt{2}$
$\Rightarrow r=1+1.4$
$\Rightarrow r=2.4$
Now, let the value for $\theta =60{}^\circ $
$\Rightarrow r=1+2\sin 60{}^\circ $
$\Rightarrow r=1+2\times \dfrac{\sqrt{3}}{2}$
$\Rightarrow r=1+\sqrt{3}$
$\Rightarrow r=1+1.7$
$\Rightarrow r=2.7$
Now, assume the value of variable $\theta =90{}^\circ $
$\Rightarrow r=1+2\sin 90{}^\circ $
$\Rightarrow r=1+2\times 1$
$\Rightarrow r=1+2$
$\Rightarrow r=3$
Here, we will make the table for these variables so that we can easily get the graph as:
| Value for $\theta $ | Value of $r$ |
| $0{}^\circ $ | $1$ |
| $30{}^\circ $ | 2 |
| $45{}^\circ $ | 2.4 |
| $60{}^\circ $ | 2.7 |
| $90{}^\circ $ | 3 |
Now, we got some values for $\theta $ and $r$ . So, the graphical representation will be as:
Note: Here, we will check if the solution of the equation is correct or not by putting the obtained values of $r$ and evaluating the values of $\theta $ as:
| Value of $r$ | Equation:$\Rightarrow r=1+2\sin \theta $ | Value for $\theta $ |
| $1$ | $\Rightarrow 1=1+2\sin \theta $$\Rightarrow 2\sin \theta =1-1$$\Rightarrow 2\sin \theta =0$$\Rightarrow \sin \theta =0$$\Rightarrow \sin \theta =\sin 0{}^\circ $$\Rightarrow \theta =0{}^\circ $ | $0{}^\circ $ |
| 2 | $\Rightarrow 2=1+2\sin \theta $$\Rightarrow 2\sin \theta =2-1$$\Rightarrow 2\sin \theta =1$$\Rightarrow \sin \theta =\dfrac{1}{2}$$\Rightarrow \sin \theta =\sin 30{}^\circ $$\Rightarrow \theta =30{}^\circ $ | $30{}^\circ $ |
| 2.4 | $\Rightarrow 2.4=1+2\sin \theta $$\Rightarrow 2\sin \theta =2.4-1$$\Rightarrow 2\sin \theta =1.4$$\Rightarrow 2\sin \theta =\sqrt{2}$$\Rightarrow \sin \theta =\dfrac{\sqrt{2}}{2}$$\Rightarrow \sin \theta =\dfrac{1}{\sqrt{2}}$$\Rightarrow \sin \theta =\sin 45{}^\circ $$\Rightarrow \theta =45{}^\circ $ | $45{}^\circ $ |
| 2.7 | $\Rightarrow 2.7=1+2\sin \theta $$\Rightarrow 2\sin \theta =2.7-1$$\Rightarrow 2\sin \theta =1.7$$\Rightarrow 2\sin \theta =\sqrt{3}$$\Rightarrow \sin \theta =\dfrac{\sqrt{3}}{2}$$\Rightarrow \sin \theta =\sin 60{}^\circ $$\Rightarrow \theta =60{}^\circ $ | $60{}^\circ $ |
| 3 | $\Rightarrow 3=1+2\sin \theta $$\Rightarrow 2\sin \theta =3-1$$\Rightarrow 2\sin \theta =2$$\Rightarrow \sin \theta =\dfrac{2}{2}$$\Rightarrow \sin \theta =1$$\Rightarrow \sin \theta =\sin 90{}^\circ $$\Rightarrow \theta =90{}^\circ $ | $90{}^\circ $. |
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

