
How do you factor ${{x}^{6}}+8$?
Answer
557.7k+ views
Hint: We first take the factorisation of the given polynomial ${{x}^{6}}+8$ according to the identity ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$. We solve the multiplication to find the simplified form of ${{\left( y-4 \right)}^{3}}$ by replacing with $a=y;b=4$. We also verify the result with an arbitrary value of x.
Complete step by step answer:
The given polynomial ${{x}^{6}}+8$ is cubic expression. We consider ${{x}^{6}}$ as ${{\left( {{x}^{2}} \right)}^{3}}$ and 8 as ${{2}^{3}}$.
It’s a sum of two cube numbers. We factorise the given sum of the cubes according to the identity ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We have ${{x}^{6}}+8$ and for the theorem we replace the values as $a={{x}^{2}};b=2$
We get \[{{x}^{6}}+8={{\left( {{x}^{2}} \right)}^{3}}+{{2}^{3}}=\left( {{x}^{2}}+2 \right)\left[ {{x}^{4}}-2{{x}^{2}}+4 \right]\].
We can see the term ${{x}^{6}}+8$ is a multiplication of two polynomials \[\left( {{x}^{2}}+2 \right)\] and \[\left( {{x}^{4}}-2{{x}^{2}}+4 \right)\].
These terms can’t be factored any more.
The factorisation of ${{x}^{6}}+8$ is \[\left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right)\].
Now we verify the result with an arbitrary value of $x=2$.
We have ${{x}^{6}}+8=\left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right)$.
The left-hand side of the equation gives ${{x}^{6}}+8={{2}^{6}}+8=64+8=72$.
The left-hand side of the equation gives
$\begin{align}
& \left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right) \\
& =\left( {{2}^{2}}+2 \right)\left( {{2}^{4}}-2\times {{2}^{2}}+4 \right) \\
& =6\times 12 \\
& =72 \\
\end{align}$
Thus, verified the result of ${{x}^{6}}+8=\left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right)$.
Note:
We explain the process of getting ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We need to find the simplified form of ${{\left( a+b \right)}^{3}}$. This is the cube of the sum of two numbers.
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
We need to multiply the term $\left( a+b \right)$ on both side of the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
On the left side of the equation, we get ${{\left( a+b \right)}^{2}}\left( a+b \right)={{\left( a+b \right)}^{3}}$.
On the right side we have $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right)$. We use multiplication and get
$\begin{align}
& \Rightarrow \left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right) \\
& ={{a}^{2}}.a+a.{{b}^{2}}+2ab\times a+{{a}^{2}}.b+{{b}^{2}}.b+2ab.b \\
& ={{a}^{3}}+a{{b}^{2}}+2{{a}^{2}}b+{{a}^{2}}b+{{b}^{3}}+2a{{b}^{2}} \\
& ={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
\end{align}$
We also can take another form where
${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$.
This gives
$\begin{align}
& {{a}^{3}}+{{b}^{3}} \\
& ={{\left( a+b \right)}^{3}}-3ab\left( a+b \right) \\
& =\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& =\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
\end{align}$
Complete step by step answer:
The given polynomial ${{x}^{6}}+8$ is cubic expression. We consider ${{x}^{6}}$ as ${{\left( {{x}^{2}} \right)}^{3}}$ and 8 as ${{2}^{3}}$.
It’s a sum of two cube numbers. We factorise the given sum of the cubes according to the identity ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We have ${{x}^{6}}+8$ and for the theorem we replace the values as $a={{x}^{2}};b=2$
We get \[{{x}^{6}}+8={{\left( {{x}^{2}} \right)}^{3}}+{{2}^{3}}=\left( {{x}^{2}}+2 \right)\left[ {{x}^{4}}-2{{x}^{2}}+4 \right]\].
We can see the term ${{x}^{6}}+8$ is a multiplication of two polynomials \[\left( {{x}^{2}}+2 \right)\] and \[\left( {{x}^{4}}-2{{x}^{2}}+4 \right)\].
These terms can’t be factored any more.
The factorisation of ${{x}^{6}}+8$ is \[\left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right)\].
Now we verify the result with an arbitrary value of $x=2$.
We have ${{x}^{6}}+8=\left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right)$.
The left-hand side of the equation gives ${{x}^{6}}+8={{2}^{6}}+8=64+8=72$.
The left-hand side of the equation gives
$\begin{align}
& \left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right) \\
& =\left( {{2}^{2}}+2 \right)\left( {{2}^{4}}-2\times {{2}^{2}}+4 \right) \\
& =6\times 12 \\
& =72 \\
\end{align}$
Thus, verified the result of ${{x}^{6}}+8=\left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right)$.
Note:
We explain the process of getting ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We need to find the simplified form of ${{\left( a+b \right)}^{3}}$. This is the cube of the sum of two numbers.
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
We need to multiply the term $\left( a+b \right)$ on both side of the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
On the left side of the equation, we get ${{\left( a+b \right)}^{2}}\left( a+b \right)={{\left( a+b \right)}^{3}}$.
On the right side we have $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right)$. We use multiplication and get
$\begin{align}
& \Rightarrow \left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right) \\
& ={{a}^{2}}.a+a.{{b}^{2}}+2ab\times a+{{a}^{2}}.b+{{b}^{2}}.b+2ab.b \\
& ={{a}^{3}}+a{{b}^{2}}+2{{a}^{2}}b+{{a}^{2}}b+{{b}^{3}}+2a{{b}^{2}} \\
& ={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
\end{align}$
We also can take another form where
${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$.
This gives
$\begin{align}
& {{a}^{3}}+{{b}^{3}} \\
& ={{\left( a+b \right)}^{3}}-3ab\left( a+b \right) \\
& =\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& =\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

