
How do you factor ${{x}^{6}}+8$?
Answer
544.8k+ views
Hint: We first take the factorisation of the given polynomial ${{x}^{6}}+8$ according to the identity ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$. We solve the multiplication to find the simplified form of ${{\left( y-4 \right)}^{3}}$ by replacing with $a=y;b=4$. We also verify the result with an arbitrary value of x.
Complete step by step answer:
The given polynomial ${{x}^{6}}+8$ is cubic expression. We consider ${{x}^{6}}$ as ${{\left( {{x}^{2}} \right)}^{3}}$ and 8 as ${{2}^{3}}$.
It’s a sum of two cube numbers. We factorise the given sum of the cubes according to the identity ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We have ${{x}^{6}}+8$ and for the theorem we replace the values as $a={{x}^{2}};b=2$
We get \[{{x}^{6}}+8={{\left( {{x}^{2}} \right)}^{3}}+{{2}^{3}}=\left( {{x}^{2}}+2 \right)\left[ {{x}^{4}}-2{{x}^{2}}+4 \right]\].
We can see the term ${{x}^{6}}+8$ is a multiplication of two polynomials \[\left( {{x}^{2}}+2 \right)\] and \[\left( {{x}^{4}}-2{{x}^{2}}+4 \right)\].
These terms can’t be factored any more.
The factorisation of ${{x}^{6}}+8$ is \[\left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right)\].
Now we verify the result with an arbitrary value of $x=2$.
We have ${{x}^{6}}+8=\left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right)$.
The left-hand side of the equation gives ${{x}^{6}}+8={{2}^{6}}+8=64+8=72$.
The left-hand side of the equation gives
$\begin{align}
& \left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right) \\
& =\left( {{2}^{2}}+2 \right)\left( {{2}^{4}}-2\times {{2}^{2}}+4 \right) \\
& =6\times 12 \\
& =72 \\
\end{align}$
Thus, verified the result of ${{x}^{6}}+8=\left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right)$.
Note:
We explain the process of getting ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We need to find the simplified form of ${{\left( a+b \right)}^{3}}$. This is the cube of the sum of two numbers.
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
We need to multiply the term $\left( a+b \right)$ on both side of the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
On the left side of the equation, we get ${{\left( a+b \right)}^{2}}\left( a+b \right)={{\left( a+b \right)}^{3}}$.
On the right side we have $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right)$. We use multiplication and get
$\begin{align}
& \Rightarrow \left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right) \\
& ={{a}^{2}}.a+a.{{b}^{2}}+2ab\times a+{{a}^{2}}.b+{{b}^{2}}.b+2ab.b \\
& ={{a}^{3}}+a{{b}^{2}}+2{{a}^{2}}b+{{a}^{2}}b+{{b}^{3}}+2a{{b}^{2}} \\
& ={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
\end{align}$
We also can take another form where
${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$.
This gives
$\begin{align}
& {{a}^{3}}+{{b}^{3}} \\
& ={{\left( a+b \right)}^{3}}-3ab\left( a+b \right) \\
& =\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& =\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
\end{align}$
Complete step by step answer:
The given polynomial ${{x}^{6}}+8$ is cubic expression. We consider ${{x}^{6}}$ as ${{\left( {{x}^{2}} \right)}^{3}}$ and 8 as ${{2}^{3}}$.
It’s a sum of two cube numbers. We factorise the given sum of the cubes according to the identity ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We have ${{x}^{6}}+8$ and for the theorem we replace the values as $a={{x}^{2}};b=2$
We get \[{{x}^{6}}+8={{\left( {{x}^{2}} \right)}^{3}}+{{2}^{3}}=\left( {{x}^{2}}+2 \right)\left[ {{x}^{4}}-2{{x}^{2}}+4 \right]\].
We can see the term ${{x}^{6}}+8$ is a multiplication of two polynomials \[\left( {{x}^{2}}+2 \right)\] and \[\left( {{x}^{4}}-2{{x}^{2}}+4 \right)\].
These terms can’t be factored any more.
The factorisation of ${{x}^{6}}+8$ is \[\left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right)\].
Now we verify the result with an arbitrary value of $x=2$.
We have ${{x}^{6}}+8=\left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right)$.
The left-hand side of the equation gives ${{x}^{6}}+8={{2}^{6}}+8=64+8=72$.
The left-hand side of the equation gives
$\begin{align}
& \left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right) \\
& =\left( {{2}^{2}}+2 \right)\left( {{2}^{4}}-2\times {{2}^{2}}+4 \right) \\
& =6\times 12 \\
& =72 \\
\end{align}$
Thus, verified the result of ${{x}^{6}}+8=\left( {{x}^{2}}+2 \right)\left( {{x}^{4}}-2{{x}^{2}}+4 \right)$.
Note:
We explain the process of getting ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We need to find the simplified form of ${{\left( a+b \right)}^{3}}$. This is the cube of the sum of two numbers.
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
We need to multiply the term $\left( a+b \right)$ on both side of the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
On the left side of the equation, we get ${{\left( a+b \right)}^{2}}\left( a+b \right)={{\left( a+b \right)}^{3}}$.
On the right side we have $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right)$. We use multiplication and get
$\begin{align}
& \Rightarrow \left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right) \\
& ={{a}^{2}}.a+a.{{b}^{2}}+2ab\times a+{{a}^{2}}.b+{{b}^{2}}.b+2ab.b \\
& ={{a}^{3}}+a{{b}^{2}}+2{{a}^{2}}b+{{a}^{2}}b+{{b}^{3}}+2a{{b}^{2}} \\
& ={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
\end{align}$
We also can take another form where
${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$.
This gives
$\begin{align}
& {{a}^{3}}+{{b}^{3}} \\
& ={{\left( a+b \right)}^{3}}-3ab\left( a+b \right) \\
& =\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& =\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
\end{align}$
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

