Answer
Verified
409.8k+ views
Hint: We first take the factorisation of the given polynomial ${{x}^{3}}+343$ according to the identity ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$. We form the factorisation to find the simplified form of ${{x}^{3}}+343$ by replacing with $a=x;b=7$. We also verify the result with an arbitrary value of $x$.
Complete step-by-step solution:
The given polynomial ${{x}^{3}}+343$ is cubic expression. We consider ${{x}^{3}}$ as ${{\left( x \right)}^{3}}$ and 343 as ${{7}^{3}}$.
It’s a sum of two cube numbers. We factorise the given sum of the cubes according to the identity ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We have ${{x}^{3}}+343$ and for the theorem we replace the values as $a=x;b=7$
We get \[{{x}^{3}}+343={{\left( x \right)}^{3}}+{{7}^{3}}=\left( x+7 \right)\left[ {{x}^{2}}-7x+49 \right]\].
We can see the term ${{x}^{3}}+343$ is a multiplication of two polynomials \[\left( x+7 \right)\] and \[\left( {{x}^{2}}-7x+49 \right)\].
These terms can’t be factored any more.
The factorisation of ${{x}^{3}}+343$ is \[\left( x+7 \right)\left( {{x}^{2}}-7x+49 \right)\].
Now we verify the result with an arbitrary value of $x=2$.
We have ${{x}^{3}}+343=\left( x+7 \right)\left( {{x}^{2}}-7x+49 \right)$.
The left-hand side of the equation gives ${{x}^{3}}+343={{2}^{3}}+343=8+343=351$.
The right-hand side of the equation gives
$\begin{align}
& \left( x+7 \right)\left( {{x}^{2}}-7x+49 \right) \\
& =\left( 2+7 \right)\left( {{2}^{2}}-7\times 2+49 \right) \\
& =9\times 39 \\
& =351 \\
\end{align}$
Thus, verified the result of ${{x}^{3}}+343=\left( x+7 \right)\left( {{x}^{2}}-7x+49 \right)$.
Note: We explain the process of getting ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We need to find the simplified form of ${{\left( a+b \right)}^{3}}$. This is the cube of the sum of two numbers.
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
We need to multiply the term $\left( a+b \right)$ on both side of the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
On the left side of the equation, we get ${{\left( a+b \right)}^{2}}\left( a+b \right)={{\left( a+b \right)}^{3}}$.
On the right side we have $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right)$. We use multiplication and get
$\begin{align}
& \Rightarrow \left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right) \\
& ={{a}^{2}}.a+a.{{b}^{2}}+2ab\times a+{{a}^{2}}.b+{{b}^{2}}.b+2ab.b \\
& ={{a}^{3}}+a{{b}^{2}}+2{{a}^{2}}b+{{a}^{2}}b+{{b}^{3}}+2a{{b}^{2}} \\
& ={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
\end{align}$
We also can take another form where
${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$.
This gives
$\begin{align}
& {{a}^{3}}+{{b}^{3}} \\
& ={{\left( a+b \right)}^{3}}-3ab\left( a+b \right) \\
& =\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& =\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
\end{align}$
Complete step-by-step solution:
The given polynomial ${{x}^{3}}+343$ is cubic expression. We consider ${{x}^{3}}$ as ${{\left( x \right)}^{3}}$ and 343 as ${{7}^{3}}$.
It’s a sum of two cube numbers. We factorise the given sum of the cubes according to the identity ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We have ${{x}^{3}}+343$ and for the theorem we replace the values as $a=x;b=7$
We get \[{{x}^{3}}+343={{\left( x \right)}^{3}}+{{7}^{3}}=\left( x+7 \right)\left[ {{x}^{2}}-7x+49 \right]\].
We can see the term ${{x}^{3}}+343$ is a multiplication of two polynomials \[\left( x+7 \right)\] and \[\left( {{x}^{2}}-7x+49 \right)\].
These terms can’t be factored any more.
The factorisation of ${{x}^{3}}+343$ is \[\left( x+7 \right)\left( {{x}^{2}}-7x+49 \right)\].
Now we verify the result with an arbitrary value of $x=2$.
We have ${{x}^{3}}+343=\left( x+7 \right)\left( {{x}^{2}}-7x+49 \right)$.
The left-hand side of the equation gives ${{x}^{3}}+343={{2}^{3}}+343=8+343=351$.
The right-hand side of the equation gives
$\begin{align}
& \left( x+7 \right)\left( {{x}^{2}}-7x+49 \right) \\
& =\left( 2+7 \right)\left( {{2}^{2}}-7\times 2+49 \right) \\
& =9\times 39 \\
& =351 \\
\end{align}$
Thus, verified the result of ${{x}^{3}}+343=\left( x+7 \right)\left( {{x}^{2}}-7x+49 \right)$.
Note: We explain the process of getting ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We need to find the simplified form of ${{\left( a+b \right)}^{3}}$. This is the cube of the sum of two numbers.
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
We need to multiply the term $\left( a+b \right)$ on both side of the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
On the left side of the equation, we get ${{\left( a+b \right)}^{2}}\left( a+b \right)={{\left( a+b \right)}^{3}}$.
On the right side we have $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right)$. We use multiplication and get
$\begin{align}
& \Rightarrow \left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right) \\
& ={{a}^{2}}.a+a.{{b}^{2}}+2ab\times a+{{a}^{2}}.b+{{b}^{2}}.b+2ab.b \\
& ={{a}^{3}}+a{{b}^{2}}+2{{a}^{2}}b+{{a}^{2}}b+{{b}^{3}}+2a{{b}^{2}} \\
& ={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
\end{align}$
We also can take another form where
${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$.
This gives
$\begin{align}
& {{a}^{3}}+{{b}^{3}} \\
& ={{\left( a+b \right)}^{3}}-3ab\left( a+b \right) \\
& =\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& =\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
\end{align}$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell