
How do you differentiate \[y={{x}^{\sqrt{x}}}\]?
Answer
533.4k+ views
Hint: This question is from the topic of calculus. In solving this question, we will first put log base e (that is \[\ln \]) to the both sides of the equation. After that, we will differentiate both sides of the equation. We will use the formula \[d\left( \ln x \right)=\left( \dfrac{1}{x} \right)dx\] and \[d\left( {{x}^{n}} \right)=\left( n{{x}^{n-1}} \right)dx\] for the further differentiation. After that, we will solve the further question and find the value of \[\dfrac{dy}{dx}\] that will be our answer.
Complete step by step answer:
Let us solve this question.
In this question, we have asked to differentiate \[y={{x}^{\sqrt{x}}}\]. Or, we can say that we have to find the value of \[\dfrac{dy}{dx}\] using the equation \[y={{x}^{\sqrt{x}}}\].
The term which we have to solve is
\[y={{x}^{\sqrt{x}}}\]
Now, putting \[\ln \](that is log base ‘e’ or we can say \[{{\log }_{e}}\]) to the both side of the equation, we get
\[\Rightarrow \ln y=\ln {{x}^{\sqrt{x}}}\]
Now, using the formula of logarithms that is \[\ln {{x}^{a}}=a\ln x\], we can write the above equation as
\[\Rightarrow \ln y=\sqrt{x}\ln x\]
Now, differentiating both side of equation, we can write
\[\Rightarrow d\left( \ln y \right)=d\left( \sqrt{x}\ln x \right)\]
Now, using the formula of product rule that is \[d\left( u.v \right)=vd\left( u \right)-ud\left( v \right)\], we can write the above equation as
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot d\left( \sqrt{x} \right)+\sqrt{x}\centerdot d\left( \ln x \right)\]
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot d\left( {{x}^{\dfrac{1}{2}}} \right)+\sqrt{x}\centerdot d\left( \ln x \right)\]
Now, using the formula of differentiation that is \[d\left( {{x}^{n}} \right)=\left( n{{x}^{n-1}} \right)dx\], we can write
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot \left( \dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}} \right)dx+\sqrt{x}\centerdot d\left( \ln x \right)\]
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot \left( \dfrac{1}{2}{{x}^{-\dfrac{1}{2}}} \right)dx+\sqrt{x}\centerdot d\left( \ln x \right)\]
Now, using the formula of differentiation that is \[d\left( \ln x \right)=\left( \dfrac{1}{x} \right)dx\], we can write the above equation as
\[\Rightarrow \left( \dfrac{1}{y} \right)dy=\ln x\centerdot \left( \dfrac{1}{2}{{x}^{-\dfrac{1}{2}}} \right)dx+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)dx\]
The above equation can also be written as
\[\Rightarrow \left( \dfrac{1}{y} \right)dy=\ln x\centerdot \left( \dfrac{1}{2\left( {{x}^{\dfrac{1}{2}}} \right)} \right)dx+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)dx\]
\[\Rightarrow \left( \dfrac{1}{y} \right)dy=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)dx+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)dx\]
Now dividing ‘dx’ to both side of the equation, we can write
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)\]
The above equation can also be written as
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)+\sqrt{x}\centerdot \left( \dfrac{1}{\sqrt{x}\centerdot \sqrt{x}} \right)\]
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)+\left( \dfrac{1}{\sqrt{x}} \right)\]
The above equation can also be written as
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\dfrac{\ln x}{2}\left( \dfrac{1}{\sqrt{x}} \right)+\left( \dfrac{1}{\sqrt{x}} \right)\]
Taking \[\dfrac{1}{\sqrt{x}}\] as common in the right side of the equation, we can write
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\left( \dfrac{1}{\sqrt{x}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
\[\Rightarrow \dfrac{dy}{dx}=y\left( \dfrac{1}{\sqrt{x}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
Now, putting the value of y in the above equation, we can write
\[\Rightarrow \dfrac{dy}{dx}={{x}^{\sqrt{x}}}\left( \dfrac{1}{\sqrt{x}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{\sqrt{x}}}\left( {{x}^{-\dfrac{1}{2}}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
Now, using the formula \[{{x}^{a}}{{x}^{b}}={{x}^{a+b}}\], we can write
\[\Rightarrow \dfrac{dy}{dx}={{x}^{\sqrt{x}-\dfrac{1}{2}}}\left( \dfrac{\ln x}{2}+1 \right)\]
Or, we can write the above equation as
\[\Rightarrow \dfrac{dy}{dx}={{x}^{-\dfrac{1}{2}+\sqrt{x}}}\left( \dfrac{\ln x+2}{2} \right)\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}+\sqrt{x}}}\left( \ln x+2 \right)\]
Hence, we have done differentiation now. The differentiation is \[\dfrac{dy}{dx}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}+\sqrt{x}}}\left( \ln x+2 \right)\]
Note:
We should have a better knowledge in the topic of pre-calculus for solving this type of question easily. We should the following formulas:
Product rule of differentiation: \[d\left( u.v \right)=vd\left( u \right)-ud\left( v \right)\]
Logarithm formula: \[\ln {{x}^{a}}=a\ln x\]
\[d\left( \ln x \right)=\left( \dfrac{1}{x} \right)dx\]
\[d\left( {{x}^{n}} \right)=\left( n{{x}^{n-1}} \right)dx\]
\[\sqrt{x}={{x}^{\dfrac{1}{2}}}\]
\[\dfrac{1}{\sqrt{x}}={{x}^{-\left( \dfrac{1}{2} \right)}}\]
\[{{x}^{a}}{{x}^{b}}={{x}^{a+b}}\]
Complete step by step answer:
Let us solve this question.
In this question, we have asked to differentiate \[y={{x}^{\sqrt{x}}}\]. Or, we can say that we have to find the value of \[\dfrac{dy}{dx}\] using the equation \[y={{x}^{\sqrt{x}}}\].
The term which we have to solve is
\[y={{x}^{\sqrt{x}}}\]
Now, putting \[\ln \](that is log base ‘e’ or we can say \[{{\log }_{e}}\]) to the both side of the equation, we get
\[\Rightarrow \ln y=\ln {{x}^{\sqrt{x}}}\]
Now, using the formula of logarithms that is \[\ln {{x}^{a}}=a\ln x\], we can write the above equation as
\[\Rightarrow \ln y=\sqrt{x}\ln x\]
Now, differentiating both side of equation, we can write
\[\Rightarrow d\left( \ln y \right)=d\left( \sqrt{x}\ln x \right)\]
Now, using the formula of product rule that is \[d\left( u.v \right)=vd\left( u \right)-ud\left( v \right)\], we can write the above equation as
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot d\left( \sqrt{x} \right)+\sqrt{x}\centerdot d\left( \ln x \right)\]
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot d\left( {{x}^{\dfrac{1}{2}}} \right)+\sqrt{x}\centerdot d\left( \ln x \right)\]
Now, using the formula of differentiation that is \[d\left( {{x}^{n}} \right)=\left( n{{x}^{n-1}} \right)dx\], we can write
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot \left( \dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}} \right)dx+\sqrt{x}\centerdot d\left( \ln x \right)\]
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot \left( \dfrac{1}{2}{{x}^{-\dfrac{1}{2}}} \right)dx+\sqrt{x}\centerdot d\left( \ln x \right)\]
Now, using the formula of differentiation that is \[d\left( \ln x \right)=\left( \dfrac{1}{x} \right)dx\], we can write the above equation as
\[\Rightarrow \left( \dfrac{1}{y} \right)dy=\ln x\centerdot \left( \dfrac{1}{2}{{x}^{-\dfrac{1}{2}}} \right)dx+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)dx\]
The above equation can also be written as
\[\Rightarrow \left( \dfrac{1}{y} \right)dy=\ln x\centerdot \left( \dfrac{1}{2\left( {{x}^{\dfrac{1}{2}}} \right)} \right)dx+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)dx\]
\[\Rightarrow \left( \dfrac{1}{y} \right)dy=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)dx+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)dx\]
Now dividing ‘dx’ to both side of the equation, we can write
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)\]
The above equation can also be written as
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)+\sqrt{x}\centerdot \left( \dfrac{1}{\sqrt{x}\centerdot \sqrt{x}} \right)\]
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)+\left( \dfrac{1}{\sqrt{x}} \right)\]
The above equation can also be written as
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\dfrac{\ln x}{2}\left( \dfrac{1}{\sqrt{x}} \right)+\left( \dfrac{1}{\sqrt{x}} \right)\]
Taking \[\dfrac{1}{\sqrt{x}}\] as common in the right side of the equation, we can write
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\left( \dfrac{1}{\sqrt{x}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
\[\Rightarrow \dfrac{dy}{dx}=y\left( \dfrac{1}{\sqrt{x}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
Now, putting the value of y in the above equation, we can write
\[\Rightarrow \dfrac{dy}{dx}={{x}^{\sqrt{x}}}\left( \dfrac{1}{\sqrt{x}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{\sqrt{x}}}\left( {{x}^{-\dfrac{1}{2}}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
Now, using the formula \[{{x}^{a}}{{x}^{b}}={{x}^{a+b}}\], we can write
\[\Rightarrow \dfrac{dy}{dx}={{x}^{\sqrt{x}-\dfrac{1}{2}}}\left( \dfrac{\ln x}{2}+1 \right)\]
Or, we can write the above equation as
\[\Rightarrow \dfrac{dy}{dx}={{x}^{-\dfrac{1}{2}+\sqrt{x}}}\left( \dfrac{\ln x+2}{2} \right)\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}+\sqrt{x}}}\left( \ln x+2 \right)\]
Hence, we have done differentiation now. The differentiation is \[\dfrac{dy}{dx}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}+\sqrt{x}}}\left( \ln x+2 \right)\]
Note:
We should have a better knowledge in the topic of pre-calculus for solving this type of question easily. We should the following formulas:
Product rule of differentiation: \[d\left( u.v \right)=vd\left( u \right)-ud\left( v \right)\]
Logarithm formula: \[\ln {{x}^{a}}=a\ln x\]
\[d\left( \ln x \right)=\left( \dfrac{1}{x} \right)dx\]
\[d\left( {{x}^{n}} \right)=\left( n{{x}^{n-1}} \right)dx\]
\[\sqrt{x}={{x}^{\dfrac{1}{2}}}\]
\[\dfrac{1}{\sqrt{x}}={{x}^{-\left( \dfrac{1}{2} \right)}}\]
\[{{x}^{a}}{{x}^{b}}={{x}^{a+b}}\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

