
How do you differentiate \[y={{x}^{\sqrt{x}}}\]?
Answer
449.4k+ views
Hint: This question is from the topic of calculus. In solving this question, we will first put log base e (that is \[\ln \]) to the both sides of the equation. After that, we will differentiate both sides of the equation. We will use the formula \[d\left( \ln x \right)=\left( \dfrac{1}{x} \right)dx\] and \[d\left( {{x}^{n}} \right)=\left( n{{x}^{n-1}} \right)dx\] for the further differentiation. After that, we will solve the further question and find the value of \[\dfrac{dy}{dx}\] that will be our answer.
Complete step by step answer:
Let us solve this question.
In this question, we have asked to differentiate \[y={{x}^{\sqrt{x}}}\]. Or, we can say that we have to find the value of \[\dfrac{dy}{dx}\] using the equation \[y={{x}^{\sqrt{x}}}\].
The term which we have to solve is
\[y={{x}^{\sqrt{x}}}\]
Now, putting \[\ln \](that is log base ‘e’ or we can say \[{{\log }_{e}}\]) to the both side of the equation, we get
\[\Rightarrow \ln y=\ln {{x}^{\sqrt{x}}}\]
Now, using the formula of logarithms that is \[\ln {{x}^{a}}=a\ln x\], we can write the above equation as
\[\Rightarrow \ln y=\sqrt{x}\ln x\]
Now, differentiating both side of equation, we can write
\[\Rightarrow d\left( \ln y \right)=d\left( \sqrt{x}\ln x \right)\]
Now, using the formula of product rule that is \[d\left( u.v \right)=vd\left( u \right)-ud\left( v \right)\], we can write the above equation as
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot d\left( \sqrt{x} \right)+\sqrt{x}\centerdot d\left( \ln x \right)\]
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot d\left( {{x}^{\dfrac{1}{2}}} \right)+\sqrt{x}\centerdot d\left( \ln x \right)\]
Now, using the formula of differentiation that is \[d\left( {{x}^{n}} \right)=\left( n{{x}^{n-1}} \right)dx\], we can write
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot \left( \dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}} \right)dx+\sqrt{x}\centerdot d\left( \ln x \right)\]
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot \left( \dfrac{1}{2}{{x}^{-\dfrac{1}{2}}} \right)dx+\sqrt{x}\centerdot d\left( \ln x \right)\]
Now, using the formula of differentiation that is \[d\left( \ln x \right)=\left( \dfrac{1}{x} \right)dx\], we can write the above equation as
\[\Rightarrow \left( \dfrac{1}{y} \right)dy=\ln x\centerdot \left( \dfrac{1}{2}{{x}^{-\dfrac{1}{2}}} \right)dx+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)dx\]
The above equation can also be written as
\[\Rightarrow \left( \dfrac{1}{y} \right)dy=\ln x\centerdot \left( \dfrac{1}{2\left( {{x}^{\dfrac{1}{2}}} \right)} \right)dx+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)dx\]
\[\Rightarrow \left( \dfrac{1}{y} \right)dy=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)dx+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)dx\]
Now dividing ‘dx’ to both side of the equation, we can write
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)\]
The above equation can also be written as
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)+\sqrt{x}\centerdot \left( \dfrac{1}{\sqrt{x}\centerdot \sqrt{x}} \right)\]
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)+\left( \dfrac{1}{\sqrt{x}} \right)\]
The above equation can also be written as
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\dfrac{\ln x}{2}\left( \dfrac{1}{\sqrt{x}} \right)+\left( \dfrac{1}{\sqrt{x}} \right)\]
Taking \[\dfrac{1}{\sqrt{x}}\] as common in the right side of the equation, we can write
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\left( \dfrac{1}{\sqrt{x}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
\[\Rightarrow \dfrac{dy}{dx}=y\left( \dfrac{1}{\sqrt{x}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
Now, putting the value of y in the above equation, we can write
\[\Rightarrow \dfrac{dy}{dx}={{x}^{\sqrt{x}}}\left( \dfrac{1}{\sqrt{x}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{\sqrt{x}}}\left( {{x}^{-\dfrac{1}{2}}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
Now, using the formula \[{{x}^{a}}{{x}^{b}}={{x}^{a+b}}\], we can write
\[\Rightarrow \dfrac{dy}{dx}={{x}^{\sqrt{x}-\dfrac{1}{2}}}\left( \dfrac{\ln x}{2}+1 \right)\]
Or, we can write the above equation as
\[\Rightarrow \dfrac{dy}{dx}={{x}^{-\dfrac{1}{2}+\sqrt{x}}}\left( \dfrac{\ln x+2}{2} \right)\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}+\sqrt{x}}}\left( \ln x+2 \right)\]
Hence, we have done differentiation now. The differentiation is \[\dfrac{dy}{dx}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}+\sqrt{x}}}\left( \ln x+2 \right)\]
Note:
We should have a better knowledge in the topic of pre-calculus for solving this type of question easily. We should the following formulas:
Product rule of differentiation: \[d\left( u.v \right)=vd\left( u \right)-ud\left( v \right)\]
Logarithm formula: \[\ln {{x}^{a}}=a\ln x\]
\[d\left( \ln x \right)=\left( \dfrac{1}{x} \right)dx\]
\[d\left( {{x}^{n}} \right)=\left( n{{x}^{n-1}} \right)dx\]
\[\sqrt{x}={{x}^{\dfrac{1}{2}}}\]
\[\dfrac{1}{\sqrt{x}}={{x}^{-\left( \dfrac{1}{2} \right)}}\]
\[{{x}^{a}}{{x}^{b}}={{x}^{a+b}}\]
Complete step by step answer:
Let us solve this question.
In this question, we have asked to differentiate \[y={{x}^{\sqrt{x}}}\]. Or, we can say that we have to find the value of \[\dfrac{dy}{dx}\] using the equation \[y={{x}^{\sqrt{x}}}\].
The term which we have to solve is
\[y={{x}^{\sqrt{x}}}\]
Now, putting \[\ln \](that is log base ‘e’ or we can say \[{{\log }_{e}}\]) to the both side of the equation, we get
\[\Rightarrow \ln y=\ln {{x}^{\sqrt{x}}}\]
Now, using the formula of logarithms that is \[\ln {{x}^{a}}=a\ln x\], we can write the above equation as
\[\Rightarrow \ln y=\sqrt{x}\ln x\]
Now, differentiating both side of equation, we can write
\[\Rightarrow d\left( \ln y \right)=d\left( \sqrt{x}\ln x \right)\]
Now, using the formula of product rule that is \[d\left( u.v \right)=vd\left( u \right)-ud\left( v \right)\], we can write the above equation as
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot d\left( \sqrt{x} \right)+\sqrt{x}\centerdot d\left( \ln x \right)\]
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot d\left( {{x}^{\dfrac{1}{2}}} \right)+\sqrt{x}\centerdot d\left( \ln x \right)\]
Now, using the formula of differentiation that is \[d\left( {{x}^{n}} \right)=\left( n{{x}^{n-1}} \right)dx\], we can write
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot \left( \dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}} \right)dx+\sqrt{x}\centerdot d\left( \ln x \right)\]
\[\Rightarrow d\left( \ln y \right)=\ln x\centerdot \left( \dfrac{1}{2}{{x}^{-\dfrac{1}{2}}} \right)dx+\sqrt{x}\centerdot d\left( \ln x \right)\]
Now, using the formula of differentiation that is \[d\left( \ln x \right)=\left( \dfrac{1}{x} \right)dx\], we can write the above equation as
\[\Rightarrow \left( \dfrac{1}{y} \right)dy=\ln x\centerdot \left( \dfrac{1}{2}{{x}^{-\dfrac{1}{2}}} \right)dx+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)dx\]
The above equation can also be written as
\[\Rightarrow \left( \dfrac{1}{y} \right)dy=\ln x\centerdot \left( \dfrac{1}{2\left( {{x}^{\dfrac{1}{2}}} \right)} \right)dx+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)dx\]
\[\Rightarrow \left( \dfrac{1}{y} \right)dy=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)dx+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)dx\]
Now dividing ‘dx’ to both side of the equation, we can write
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)+\sqrt{x}\centerdot \left( \dfrac{1}{x} \right)\]
The above equation can also be written as
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)+\sqrt{x}\centerdot \left( \dfrac{1}{\sqrt{x}\centerdot \sqrt{x}} \right)\]
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\ln x\centerdot \left( \dfrac{1}{2\sqrt{x}} \right)+\left( \dfrac{1}{\sqrt{x}} \right)\]
The above equation can also be written as
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\dfrac{\ln x}{2}\left( \dfrac{1}{\sqrt{x}} \right)+\left( \dfrac{1}{\sqrt{x}} \right)\]
Taking \[\dfrac{1}{\sqrt{x}}\] as common in the right side of the equation, we can write
\[\Rightarrow \left( \dfrac{1}{y} \right)\dfrac{dy}{dx}=\left( \dfrac{1}{\sqrt{x}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
\[\Rightarrow \dfrac{dy}{dx}=y\left( \dfrac{1}{\sqrt{x}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
Now, putting the value of y in the above equation, we can write
\[\Rightarrow \dfrac{dy}{dx}={{x}^{\sqrt{x}}}\left( \dfrac{1}{\sqrt{x}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{\sqrt{x}}}\left( {{x}^{-\dfrac{1}{2}}} \right)\left( \dfrac{\ln x}{2}+1 \right)\]
Now, using the formula \[{{x}^{a}}{{x}^{b}}={{x}^{a+b}}\], we can write
\[\Rightarrow \dfrac{dy}{dx}={{x}^{\sqrt{x}-\dfrac{1}{2}}}\left( \dfrac{\ln x}{2}+1 \right)\]
Or, we can write the above equation as
\[\Rightarrow \dfrac{dy}{dx}={{x}^{-\dfrac{1}{2}+\sqrt{x}}}\left( \dfrac{\ln x+2}{2} \right)\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}+\sqrt{x}}}\left( \ln x+2 \right)\]
Hence, we have done differentiation now. The differentiation is \[\dfrac{dy}{dx}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}+\sqrt{x}}}\left( \ln x+2 \right)\]
Note:
We should have a better knowledge in the topic of pre-calculus for solving this type of question easily. We should the following formulas:
Product rule of differentiation: \[d\left( u.v \right)=vd\left( u \right)-ud\left( v \right)\]
Logarithm formula: \[\ln {{x}^{a}}=a\ln x\]
\[d\left( \ln x \right)=\left( \dfrac{1}{x} \right)dx\]
\[d\left( {{x}^{n}} \right)=\left( n{{x}^{n-1}} \right)dx\]
\[\sqrt{x}={{x}^{\dfrac{1}{2}}}\]
\[\dfrac{1}{\sqrt{x}}={{x}^{-\left( \dfrac{1}{2} \right)}}\]
\[{{x}^{a}}{{x}^{b}}={{x}^{a+b}}\]
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
