
How do you calculate the arctan($0$)?
Answer
543k+ views
Hint: To solve this problem we should be aware of the fact that arctan($0$) is at which at which $\tan (x) = 0$ and x belongs to the range, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$(or $ - 90 < x < 90$ if you use degrees).
Also, $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$.
Complete step by step solution:
We need to solve arctan($0$)
We know that, arctan($0$) is at which at which $\tan (x) = 0$.
Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$
So, we get that, $\tan (x) = 0$only when, $\sin x = 0$
We will use the below unit circle to generalize $\sin x = 0$.
We get that, $\sin x = 0$in the given range of x, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$
$x = 0 + n.2.\pi $or else,
$x = \pi + 2.\pi .n$
In the given case, $x = n.\pi $, where n is an integer.
Only x = 0 satisfies, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$.
We get, $\sin x = 0$
$\tan (x) = 0$and,
arctan($0$) $ = 0$
Note:
Arctan($0$) is at which $\tan (x) = 0$. Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$. Thus, $\tan (x) = 0$ only when, $\sin x = 0$.
Also, $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$.
Complete step by step solution:
We need to solve arctan($0$)
We know that, arctan($0$) is at which at which $\tan (x) = 0$.
Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$
So, we get that, $\tan (x) = 0$only when, $\sin x = 0$
We will use the below unit circle to generalize $\sin x = 0$.
We get that, $\sin x = 0$in the given range of x, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$
$x = 0 + n.2.\pi $or else,
$x = \pi + 2.\pi .n$
In the given case, $x = n.\pi $, where n is an integer.
Only x = 0 satisfies, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$.
We get, $\sin x = 0$
$\tan (x) = 0$and,
arctan($0$) $ = 0$
Note:
Arctan($0$) is at which $\tan (x) = 0$. Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$. Thus, $\tan (x) = 0$ only when, $\sin x = 0$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

