
How do you calculate the arctan($0$)?
Answer
552.6k+ views
Hint: To solve this problem we should be aware of the fact that arctan($0$) is at which at which $\tan (x) = 0$ and x belongs to the range, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$(or $ - 90 < x < 90$ if you use degrees).
Also, $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$.
Complete step by step solution:
We need to solve arctan($0$)
We know that, arctan($0$) is at which at which $\tan (x) = 0$.
Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$
So, we get that, $\tan (x) = 0$only when, $\sin x = 0$
We will use the below unit circle to generalize $\sin x = 0$.
We get that, $\sin x = 0$in the given range of x, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$
$x = 0 + n.2.\pi $or else,
$x = \pi + 2.\pi .n$
In the given case, $x = n.\pi $, where n is an integer.
Only x = 0 satisfies, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$.
We get, $\sin x = 0$
$\tan (x) = 0$and,
arctan($0$) $ = 0$
Note:
Arctan($0$) is at which $\tan (x) = 0$. Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$. Thus, $\tan (x) = 0$ only when, $\sin x = 0$.
Also, $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$.
Complete step by step solution:
We need to solve arctan($0$)
We know that, arctan($0$) is at which at which $\tan (x) = 0$.
Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$
So, we get that, $\tan (x) = 0$only when, $\sin x = 0$
We will use the below unit circle to generalize $\sin x = 0$.
We get that, $\sin x = 0$in the given range of x, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$
$x = 0 + n.2.\pi $or else,
$x = \pi + 2.\pi .n$
In the given case, $x = n.\pi $, where n is an integer.
Only x = 0 satisfies, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$.
We get, $\sin x = 0$
$\tan (x) = 0$and,
arctan($0$) $ = 0$
Note:
Arctan($0$) is at which $\tan (x) = 0$. Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$. Thus, $\tan (x) = 0$ only when, $\sin x = 0$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

