
How do you calculate the arctan($0$)?
Answer
542.4k+ views
Hint: To solve this problem we should be aware of the fact that arctan($0$) is at which at which $\tan (x) = 0$ and x belongs to the range, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$(or $ - 90 < x < 90$ if you use degrees).
Also, $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$.
Complete step by step solution:
We need to solve arctan($0$)
We know that, arctan($0$) is at which at which $\tan (x) = 0$.
Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$
So, we get that, $\tan (x) = 0$only when, $\sin x = 0$
We will use the below unit circle to generalize $\sin x = 0$.
We get that, $\sin x = 0$in the given range of x, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$
$x = 0 + n.2.\pi $or else,
$x = \pi + 2.\pi .n$
In the given case, $x = n.\pi $, where n is an integer.
Only x = 0 satisfies, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$.
We get, $\sin x = 0$
$\tan (x) = 0$and,
arctan($0$) $ = 0$
Note:
Arctan($0$) is at which $\tan (x) = 0$. Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$. Thus, $\tan (x) = 0$ only when, $\sin x = 0$.
Also, $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$.
Complete step by step solution:
We need to solve arctan($0$)
We know that, arctan($0$) is at which at which $\tan (x) = 0$.
Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$
So, we get that, $\tan (x) = 0$only when, $\sin x = 0$
We will use the below unit circle to generalize $\sin x = 0$.
We get that, $\sin x = 0$in the given range of x, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$
$x = 0 + n.2.\pi $or else,
$x = \pi + 2.\pi .n$
In the given case, $x = n.\pi $, where n is an integer.
Only x = 0 satisfies, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$.
We get, $\sin x = 0$
$\tan (x) = 0$and,
arctan($0$) $ = 0$
Note:
Arctan($0$) is at which $\tan (x) = 0$. Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$. Thus, $\tan (x) = 0$ only when, $\sin x = 0$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

