
What is the highest power of 2 that divides completely?
Answer
502.8k+ views
1 likes
Hint: We start solving the problem by recalling the definition of factorial of a positive number n. Using this definition, we find the value of the given factorial . We then take the product of even numbers and odd numbers separately. We then factorize the even numbers to get each power of 2. After factorizing every even number, we use the law to get the total power 2 which will be the required highest power.
Complete step-by-step solution:
According to the problem, we need to find the highest power of 2 that divides completely.
Let us first recall about the definition of factorial . We know that the factorial of a positive number n is denoted by , is the product of all positive numbers that is less than or equal to n.
i.e., . We use this definition to find the value of .
So, we have .
Let us take the even product of even numbers and product of odd numbers, as all the even numbers are divisible by 2.
.
Let us factorize the even numbers present in the factorial.
.
Let us take the product of exponents of 2 separately.
.
From law of exponents, we know that .
.
.
Let us assume the product other than the exponent of 2 be ‘d’.
---(1).
So, we have found that divides completely from equation (1), which makes 18 is the highest power of 2 that divides completely.
The highest power of 2 that divides completely is 18.
Note: We can also solve this by applying step function for the division of 20 and every number which is a power of 2. The process of solving can be seen as detailed as follows:
Highest power of 2 that divides = .
Highest power of 2 that divides = .
Highest power of 2 that divides = .
We know that step function takes the value of the integer that is less than or equal to the number present inside the function.
Highest power of 2 that divides = .
Highest power of 2 that divides = 18.
We neglected other terms as we are getting the step function as 0.
Complete step-by-step solution:
According to the problem, we need to find the highest power of 2 that divides
Let us first recall about the definition of factorial
i.e.,
So, we have
Let us take the even product of even numbers and product of odd numbers, as all the even numbers are divisible by 2.
Let us factorize the even numbers present in the factorial.
Let us take the product of exponents of 2 separately.
From law of exponents, we know that
Let us assume the product other than the exponent of 2 be ‘d’.
So, we have found that
Note: We can also solve this by applying step function for the division of 20 and every number which is a power of 2. The process of solving can be seen as detailed as follows:
We know that step function takes the value of the integer that is less than or equal to the number present inside the function.
We neglected other terms as we are getting the step function as 0.
Latest Vedantu courses for you
Grade 9 | CBSE | SCHOOL | English
Vedantu 9 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹37,300 per year
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
How many moles and how many grams of NaCl are present class 11 chemistry CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Plants which grow in shade are called A Sciophytes class 11 biology CBSE

A renewable exhaustible natural resource is A Petroleum class 11 biology CBSE

In which of the following gametophytes is not independent class 11 biology CBSE
