
Henry’s law constant for $C{O_2}$ in water is $1.67 \times {10^8}Pa$at 298K the quantity of $C{O_2}$ in 500 ml of soda water when packed under 2.5atm pressure is:
$
{\text{A}}{\text{. 0}}{\text{.082 mole}} \\
{\text{B}}{\text{. 0}}{\text{.82 mole}} \\
{\text{C}}{\text{. 0}}{\text{.41 mole}} \\
{\text{D}}{\text{. 0}}{\text{.042 mole}} \\
$
Answer
560.1k+ views
Hint: In this question first we find the mole fraction of $C{O_2}$ with the help of henry’s law. Then using the formula of mole fraction and applying the approximation on it to get the number of moles of $C{O_2}$.
Formula used:
Henry’s law: ${\text{p = }}{{\text{K}}_H} \times x$; \[{x_{solvent}} = \dfrac{{{n_{solvent}}}}{{{n_{solvent}} + {n_{solute}}}}\]
Complete answer:
We know, according to Henry's law, the mass of a dissolved gas in a given volume of solvent at equilibrium is proportional to the partial pressure of the gas.
\[ \Rightarrow {\text{p = }}{{\text{K}}_H} \times x\] (Equation 1)
Where,
p= partial pressure of gas
\[{{\text{K}}_H}\]= Henry’s constant$(1.67 \times {10^8}Pa)$
x= mole fraction of dissolved gas
Given: pressure of $C{O_2}$=2.5atm
We know 1 atm=$1.01325 \times {10^5}Pa$
Then,
Pressure of $C{O_2}$=$2.5 \times 1.01325 \times {10^5}Pa$
$=2.533125 \times {10^5}Pa$
Now, on applying the Henry’s law on $C{O_2}$ we get
$
\Rightarrow {\text{p = }}{{\text{K}}_H} \times x \\
\Rightarrow x = \dfrac{{\text{p}}}{{{{\text{K}}_H}}} \\
$
On putting the values in above equation, we get
$
\Rightarrow x = \dfrac{{2.533125 \times {{10}^5}Pa}}{{1.67 \times {{10}^8}Pa}} \\
\Rightarrow x = 1.52 \times {10^3} \\
$
Therefore the mole fraction of $C{O_2}$ is $1.52 \times {10^3}$.
But we have 500ml of soda water so that
Volume of water=500ml
Density of water=1g/ml
We know, mass=volume$ \times $density
And 500 ml of water=500g of water
Molar fraction of water=18g/mol
Now, the number of moles of water=$\dfrac{{{\text{Mass of water}}}}{{{\text{Molar mass of water}}}}$
Then,
The number of moles of water=$\dfrac{{500}}{{18}}$
$=27.78mol$
Now, apply the formula of mole fraction in $C{O_2}$, we get
\[ \Rightarrow x = \dfrac{{{n_{c{o_2}}}}}{{{n_{c{o_2}}} + {n_{{H_2}O}}}}\]
Since,
So,
\[ \Rightarrow x = \dfrac{{{n_{c{o_2}}}}}{{{n_{{H_2}O}}}}\]
On putting the values which we have in above equation, we get
$
\Rightarrow {n_{c{o_2}}} = 27.78 \times 1.52 \times {10^{ - 3}} \\
\Rightarrow {n_{c{o_2}}} = 0.042mole \\
$
Therefore, the moles of $C{O_2}$ is 0.042mole.
Hence, option D is correct.
Note: Whenever you get this type of question the key concept to solve this is to learn the concept of Henry’s law , its formula \[{\text{p = }}{{\text{K}}_H} \times x\] and mole fraction and its formula \[{x_{solvent}} = \dfrac{{{n_{solvent}}}}{{{n_{solvent}} + {n_{solute}}}}\]. And one more thing to be noted is that density of water is 1g/ml so mass of water is equal to volume of water.
Formula used:
Henry’s law: ${\text{p = }}{{\text{K}}_H} \times x$; \[{x_{solvent}} = \dfrac{{{n_{solvent}}}}{{{n_{solvent}} + {n_{solute}}}}\]
Complete answer:
We know, according to Henry's law, the mass of a dissolved gas in a given volume of solvent at equilibrium is proportional to the partial pressure of the gas.
\[ \Rightarrow {\text{p = }}{{\text{K}}_H} \times x\] (Equation 1)
Where,
p= partial pressure of gas
\[{{\text{K}}_H}\]= Henry’s constant$(1.67 \times {10^8}Pa)$
x= mole fraction of dissolved gas
Given: pressure of $C{O_2}$=2.5atm
We know 1 atm=$1.01325 \times {10^5}Pa$
Then,
Pressure of $C{O_2}$=$2.5 \times 1.01325 \times {10^5}Pa$
$=2.533125 \times {10^5}Pa$
Now, on applying the Henry’s law on $C{O_2}$ we get
$
\Rightarrow {\text{p = }}{{\text{K}}_H} \times x \\
\Rightarrow x = \dfrac{{\text{p}}}{{{{\text{K}}_H}}} \\
$
On putting the values in above equation, we get
$
\Rightarrow x = \dfrac{{2.533125 \times {{10}^5}Pa}}{{1.67 \times {{10}^8}Pa}} \\
\Rightarrow x = 1.52 \times {10^3} \\
$
Therefore the mole fraction of $C{O_2}$ is $1.52 \times {10^3}$.
But we have 500ml of soda water so that
Volume of water=500ml
Density of water=1g/ml
We know, mass=volume$ \times $density
And 500 ml of water=500g of water
Molar fraction of water=18g/mol
Now, the number of moles of water=$\dfrac{{{\text{Mass of water}}}}{{{\text{Molar mass of water}}}}$
Then,
The number of moles of water=$\dfrac{{500}}{{18}}$
$=27.78mol$
Now, apply the formula of mole fraction in $C{O_2}$, we get
\[ \Rightarrow x = \dfrac{{{n_{c{o_2}}}}}{{{n_{c{o_2}}} + {n_{{H_2}O}}}}\]
Since,
So,
\[ \Rightarrow x = \dfrac{{{n_{c{o_2}}}}}{{{n_{{H_2}O}}}}\]
On putting the values which we have in above equation, we get
$
\Rightarrow {n_{c{o_2}}} = 27.78 \times 1.52 \times {10^{ - 3}} \\
\Rightarrow {n_{c{o_2}}} = 0.042mole \\
$
Therefore, the moles of $C{O_2}$ is 0.042mole.
Hence, option D is correct.
Note: Whenever you get this type of question the key concept to solve this is to learn the concept of Henry’s law , its formula \[{\text{p = }}{{\text{K}}_H} \times x\] and mole fraction and its formula \[{x_{solvent}} = \dfrac{{{n_{solvent}}}}{{{n_{solvent}} + {n_{solute}}}}\]. And one more thing to be noted is that density of water is 1g/ml so mass of water is equal to volume of water.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

Discuss the various forms of bacteria class 11 biology CBSE

