
What happens when ethanol is dissolved in water?
A. Absorption of heat and decrease in volume
B. Emission of heat and decrease in volume
C. Absorption of heat and increase in volume
D. Emission of heat and increase in volume
Answer
559.5k+ views
Hint: Henry's law is a gas regulation that states that the amount of dissolved gasoline in a liquid is proportional to its partial strain above the liquid. The proportionality aspect is known as Henry's law constant.
Complete solution:
> The dissolution of ethanol in water is an exothermic response. Thus, right here emission of warmth takes vicinity.
> The reaction is exothermic because there may be formation and breaking of hydrogen bonds in ethanol and water takes area.
> Here, a decrease in volume of the solution takes place according to Henry's law. This is because an increase in temperature vaporizes it.
So, the correct answer is B.
Additional information:
An exothermic response is a response for which the general popular enthalpy change $\Delta {H^ \circ }$is terrible. Exothermic reactions commonly launch warmth and entail the alternative of weak bonds with more potent ones. The time period is frequently harassed with exergonic reactions, which IUPAC defines as "A reaction for which the overall well known Gibbs strength exchange $\Delta {G^ \circ }$is negative." A strongly exothermic response will generally also be exergonic due to the fact $\Delta {H^ \circ }$ makes a first-rate contribution to $\Delta {G^ \circ }$. Most of the impressive chemical reactions which might be verified in lecture rooms are exothermic and exergonic. The opposite is an endothermic reaction, which typically takes up warmness and is pushed by using an entropy growth in the system.
Note: The enthalpy of a chemical gadget is essentially its strength. The enthalpy trade $\Delta {H^ \circ }$for a response is the same to the warmth q transferred out of (or into) a closed gadget at consistent stress without in- or output of electrical power. Heat manufacturing or absorption in a chemical reaction is measured using calorimetric, e.g. with a bomb calorimeter. One common laboratory device is the response calorimeter, where the heat glides from or into the reaction vessel is monitored. The warmness release and corresponding power change $\Delta {H^ \circ }$, of a combustion reaction can be measured specifically correctly.
Complete solution:
> The dissolution of ethanol in water is an exothermic response. Thus, right here emission of warmth takes vicinity.
> The reaction is exothermic because there may be formation and breaking of hydrogen bonds in ethanol and water takes area.
> Here, a decrease in volume of the solution takes place according to Henry's law. This is because an increase in temperature vaporizes it.
So, the correct answer is B.
Additional information:
An exothermic response is a response for which the general popular enthalpy change $\Delta {H^ \circ }$is terrible. Exothermic reactions commonly launch warmth and entail the alternative of weak bonds with more potent ones. The time period is frequently harassed with exergonic reactions, which IUPAC defines as "A reaction for which the overall well known Gibbs strength exchange $\Delta {G^ \circ }$is negative." A strongly exothermic response will generally also be exergonic due to the fact $\Delta {H^ \circ }$ makes a first-rate contribution to $\Delta {G^ \circ }$. Most of the impressive chemical reactions which might be verified in lecture rooms are exothermic and exergonic. The opposite is an endothermic reaction, which typically takes up warmness and is pushed by using an entropy growth in the system.
Note: The enthalpy of a chemical gadget is essentially its strength. The enthalpy trade $\Delta {H^ \circ }$for a response is the same to the warmth q transferred out of (or into) a closed gadget at consistent stress without in- or output of electrical power. Heat manufacturing or absorption in a chemical reaction is measured using calorimetric, e.g. with a bomb calorimeter. One common laboratory device is the response calorimeter, where the heat glides from or into the reaction vessel is monitored. The warmness release and corresponding power change $\Delta {H^ \circ }$, of a combustion reaction can be measured specifically correctly.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

