
What happens when
(a) Sodium phenoxide is treated with\[C{H_3}Cl\]?
(b) \[C{H_2} = CH - C{H_2} - OH\] is oxidized by PCC
(c) Phenol is treated with \[C{H_3}COCl\]/anhydrous \[AlC{l_3}\]
Write the chemical equations to support your answer.
Answer
456.6k+ views
Hint: All the above reactions are the direct reactions taking place and all of them are one-step reactions. The first reaction is an example of Williamsons synthesis reaction, the second one is the basic oxidation reaction and the third one is the friedel-craft reaction. By the names of the reactions you can guess what might be the products of these reactions.
Complete step by step answer:
(a) When sodium phenoxide is treated with methyl chloride \[\left( {C{H_3}Cl} \right)\], the product formed is anisole. The reaction taking place here is a nucleophilic substitution reaction. Sodium phenoxide is an alkoxide and methyl chloride is a halide. When the two react, Williamson’s ether synthesis process occurs and the resulting product is ether, which is anisole. The reaction for the following takes place in the following manner:
(b) \[C{H_2} = CH - C{H_2} - OH\] is a primary alcohol. When a primary alcohol is treated with PCC, it undergoes oxidation and gets oxidized to an aldehyde. PCC is Pyridinium chlorochromate (PCC), a complex of chromium trioxide with pyridine and HCl. It is a better reagent for the oxidation of primary alcohols to an aldehyde. The reaction of \[C{H_2} = CH - C{H_2} - OH\] with PCC takes place in the following manner:
$C{H_2} = CH - CH - OH\xrightarrow{{PCC}}C{H_2} = CH - CHO$
(c) When phenol is treated with \[C{H_3}COCl\]/anhydrous \[AlC{l_3}\] two products are formed among which one of them is major and the other one is minor. The reaction that occurs here is the friedel-craft acylation reaction. The products formed as a result are the two acetylphenol products. These products are $2 - $acetylphenol and $4 - $acetylphenol, among them $4 - $acetylphenol is the major product. The reaction takes place in the following manner:
Note:
Williamson’s synthesis reaction occurs between an organohalide and a deprotonated alcohol to yield ether as the product. This deprotonated alcohol is also called alkoxide. And the reaction occurs via the $Sn2$ mechanism. PCC are very good reagents for converting a primary alcohol to an aldehyde or a secondary alcohol to a ketone. However, PCC cannot oxidize aldehydes to carboxylic acids. Friedel-crafts reactions are a set of reactions developed to attach substituents to an aromatic ring. There is also friedel-craft alkylation in which instead of $C{H_3}COCl$, $C{H_3}Cl$ is used.
Complete step by step answer:
(a) When sodium phenoxide is treated with methyl chloride \[\left( {C{H_3}Cl} \right)\], the product formed is anisole. The reaction taking place here is a nucleophilic substitution reaction. Sodium phenoxide is an alkoxide and methyl chloride is a halide. When the two react, Williamson’s ether synthesis process occurs and the resulting product is ether, which is anisole. The reaction for the following takes place in the following manner:
(b) \[C{H_2} = CH - C{H_2} - OH\] is a primary alcohol. When a primary alcohol is treated with PCC, it undergoes oxidation and gets oxidized to an aldehyde. PCC is Pyridinium chlorochromate (PCC), a complex of chromium trioxide with pyridine and HCl. It is a better reagent for the oxidation of primary alcohols to an aldehyde. The reaction of \[C{H_2} = CH - C{H_2} - OH\] with PCC takes place in the following manner:
$C{H_2} = CH - CH - OH\xrightarrow{{PCC}}C{H_2} = CH - CHO$
(c) When phenol is treated with \[C{H_3}COCl\]/anhydrous \[AlC{l_3}\] two products are formed among which one of them is major and the other one is minor. The reaction that occurs here is the friedel-craft acylation reaction. The products formed as a result are the two acetylphenol products. These products are $2 - $acetylphenol and $4 - $acetylphenol, among them $4 - $acetylphenol is the major product. The reaction takes place in the following manner:
Note:
Williamson’s synthesis reaction occurs between an organohalide and a deprotonated alcohol to yield ether as the product. This deprotonated alcohol is also called alkoxide. And the reaction occurs via the $Sn2$ mechanism. PCC are very good reagents for converting a primary alcohol to an aldehyde or a secondary alcohol to a ketone. However, PCC cannot oxidize aldehydes to carboxylic acids. Friedel-crafts reactions are a set of reactions developed to attach substituents to an aromatic ring. There is also friedel-craft alkylation in which instead of $C{H_3}COCl$, $C{H_3}Cl$ is used.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is Environment class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

The equivalent weight of Mohrs salt FeSO4 NH42SO4 6H2O class 11 chemistry CBSE

