
\[{{\text{H}}_{\text{3}}}{\text{A}}\] is a weak triprotic acid $\left( {{K_{a1}} = {{10}^{ - 5}},\,{K_{a2}} = {{10}^{ - 9}},\,{K_{a3}} = {{10}^{ - 13}}} \right)$. What is the value of $pX$ of $0.1{\text{ M }}{{\text{H}}_3}{\text{A (aq}}{\text{.)}}$ solution where $pX = - \log X$ and $X = \dfrac{{[{A^{3 - }}]}}{{[{\text{H}}{{\text{A}}^{2 - }}]}}$?
A . 7
B. 8
C. 9
D. 10
Answer
558k+ views
Hint:We know that triprotic acid is the one which donates three protons or three hydrogen ions. From the values of acid dissociation constants we can see that the degree of dissociation for triprotic acid is negligible with respect to 1.
Complete answer:
We are given a weak triprotic acid \[{{\text{H}}_{\text{3}}}{\text{A}}\]. The acid dissociates into three steps as follows:
\[{{\text{H}}_{\text{3}}}{\text{A}} \rightleftharpoons {{\text{H}}_{\text{2}}}{{\text{A}}^ - } + {{\text{H}}^ + }{\text{ }}, {K_{a1}} = {10^{ - 5}}\]
\[{{\text{H}}_{\text{2}}}{{\text{A}}^ - } \rightleftharpoons {\text{H}}{{\text{A}}^{2 - }} + {{\text{H}}^ + }{\text{ }}, {K_{a2}} = {10^{ - 9}}\]
\[{\text{H}}{{\text{A}}^{2 - }} \rightleftharpoons {{\text{A}}^{3 - }} + {{\text{H}}^ + }{\text{ }}, {K_{a3}} = {10^{ - 13}}\]
Where \[{K_{a1}}\], \[{K_{a2}}\] and \[{K_{a3}}\] are the acid dissociation constants.
The acid dissociation constant for the first reaction \[{K_{a1}}\] is very large that the acid dissociation constants for second and third reactions.
Thus, the hydrogen ion concentration is mainly from the first reaction.
Now we can calculate the concentration of hydrogen ion using the equation as follows:
$[{{\text{H}}^ + }] = \sqrt {{K_{a1}}C} $
where
\[{K_{a1}}\] is the first acid dissociation constant.
$C$ is the molar concentration of the acid.
Substitute \[{10^{ - 5}}\] for the first dissociation constant of the acid, $0.1{\text{ M}}$ for the molar concentration of the triprotic acid and solve for the hydrogen ion concentration. Thus,
$[{{\text{H}}^ + }] = \sqrt {{{10}^{ - 5}} \times 0.1{\text{ M}}} $
$\Rightarrow [{{\text{H}}^ + }] = \sqrt {{{10}^{ - 6}}} $
$\Rightarrow [{{\text{H}}^ + }] = {10^{ - 3}}{\text{ M}}$
Thus, the concentration of hydrogen ion is ${10^{ - 3}}{\text{ M}}$.
Now consider the third reaction. For the third reaction, the acid dissociation constant is \[{K_{a3}}\]. Thus,
\[{K_{a3}} = \dfrac{{[{{\text{H}}^ + }][{{\text{A}}^{3 - }}]}}{{[{\text{H}}{{\text{A}}^{2 - }}]}}\]
Substitute \[{10^{ - 13}}\] for the third acid dissociation constant, ${10^{ - 3}}{\text{ M}}$ for the concentration of hydrogen ions. Thus,
\[\Rightarrow {10^{ - 13}} = \dfrac{{{{10}^{ - 3}}{\text{ M}} \times [{{\text{A}}^{3 - }}]}}{{[{\text{H}}{{\text{A}}^{2 - }}]}}\]
$\Rightarrow \dfrac{{[{A^{3 - }}]}}{{[{\text{H}}{{\text{A}}^{2 - }}]}} = \dfrac{{{{10}^{ - 13}}}}{{{{10}^{ - 3}}}}$
$\Rightarrow \dfrac{{[{A^{3 - }}]}}{{[{\text{H}}{{\text{A}}^{2 - }}]}} = {10^{ - 10}}$
We are given that $X = \dfrac{{[{A^{3 - }}]}}{{[{\text{H}}{{\text{A}}^{2 - }}]}}$. Thus,
$X = {10^{ - 10}}$
Now, we are given that,
$pX = - \log X$
Substitute $X = {10^{ - 10}}$. Thus,
$\Rightarrow pX = - \log \left( {{{10}^{ - 10}}} \right)$
$\Rightarrow pX = 10$
Thus, the value of $pX$ of $0.1{\text{ M }}{{\text{H}}_3}{\text{A (aq}}{\text{.)}}$ solution is 10.
Thus, the correct option is (D) 10.
Note:
The triprotic acids have three dissociable protons. It undergoes stepwise ionisation. The example of triprotic acid is phosphoric acid ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}$. It dissociates in the following manner.
$\rm{H_3PO_4} \rightleftharpoons H^+\, + \, {H_2PO_4}^- $
$\rm{{H_2PO_4}^- \rightleftharpoons H^+\, + \, {HPO_4}^{2-} }$
$\rm{ {HPO_4}^{2-} \rightleftharpoons H^+\, + \, {PO_4}^{3-}}$
Complete answer:
We are given a weak triprotic acid \[{{\text{H}}_{\text{3}}}{\text{A}}\]. The acid dissociates into three steps as follows:
\[{{\text{H}}_{\text{3}}}{\text{A}} \rightleftharpoons {{\text{H}}_{\text{2}}}{{\text{A}}^ - } + {{\text{H}}^ + }{\text{ }}, {K_{a1}} = {10^{ - 5}}\]
\[{{\text{H}}_{\text{2}}}{{\text{A}}^ - } \rightleftharpoons {\text{H}}{{\text{A}}^{2 - }} + {{\text{H}}^ + }{\text{ }}, {K_{a2}} = {10^{ - 9}}\]
\[{\text{H}}{{\text{A}}^{2 - }} \rightleftharpoons {{\text{A}}^{3 - }} + {{\text{H}}^ + }{\text{ }}, {K_{a3}} = {10^{ - 13}}\]
Where \[{K_{a1}}\], \[{K_{a2}}\] and \[{K_{a3}}\] are the acid dissociation constants.
The acid dissociation constant for the first reaction \[{K_{a1}}\] is very large that the acid dissociation constants for second and third reactions.
Thus, the hydrogen ion concentration is mainly from the first reaction.
Now we can calculate the concentration of hydrogen ion using the equation as follows:
$[{{\text{H}}^ + }] = \sqrt {{K_{a1}}C} $
where
\[{K_{a1}}\] is the first acid dissociation constant.
$C$ is the molar concentration of the acid.
Substitute \[{10^{ - 5}}\] for the first dissociation constant of the acid, $0.1{\text{ M}}$ for the molar concentration of the triprotic acid and solve for the hydrogen ion concentration. Thus,
$[{{\text{H}}^ + }] = \sqrt {{{10}^{ - 5}} \times 0.1{\text{ M}}} $
$\Rightarrow [{{\text{H}}^ + }] = \sqrt {{{10}^{ - 6}}} $
$\Rightarrow [{{\text{H}}^ + }] = {10^{ - 3}}{\text{ M}}$
Thus, the concentration of hydrogen ion is ${10^{ - 3}}{\text{ M}}$.
Now consider the third reaction. For the third reaction, the acid dissociation constant is \[{K_{a3}}\]. Thus,
\[{K_{a3}} = \dfrac{{[{{\text{H}}^ + }][{{\text{A}}^{3 - }}]}}{{[{\text{H}}{{\text{A}}^{2 - }}]}}\]
Substitute \[{10^{ - 13}}\] for the third acid dissociation constant, ${10^{ - 3}}{\text{ M}}$ for the concentration of hydrogen ions. Thus,
\[\Rightarrow {10^{ - 13}} = \dfrac{{{{10}^{ - 3}}{\text{ M}} \times [{{\text{A}}^{3 - }}]}}{{[{\text{H}}{{\text{A}}^{2 - }}]}}\]
$\Rightarrow \dfrac{{[{A^{3 - }}]}}{{[{\text{H}}{{\text{A}}^{2 - }}]}} = \dfrac{{{{10}^{ - 13}}}}{{{{10}^{ - 3}}}}$
$\Rightarrow \dfrac{{[{A^{3 - }}]}}{{[{\text{H}}{{\text{A}}^{2 - }}]}} = {10^{ - 10}}$
We are given that $X = \dfrac{{[{A^{3 - }}]}}{{[{\text{H}}{{\text{A}}^{2 - }}]}}$. Thus,
$X = {10^{ - 10}}$
Now, we are given that,
$pX = - \log X$
Substitute $X = {10^{ - 10}}$. Thus,
$\Rightarrow pX = - \log \left( {{{10}^{ - 10}}} \right)$
$\Rightarrow pX = 10$
Thus, the value of $pX$ of $0.1{\text{ M }}{{\text{H}}_3}{\text{A (aq}}{\text{.)}}$ solution is 10.
Thus, the correct option is (D) 10.
Note:
The triprotic acids have three dissociable protons. It undergoes stepwise ionisation. The example of triprotic acid is phosphoric acid ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}$. It dissociates in the following manner.
$\rm{H_3PO_4} \rightleftharpoons H^+\, + \, {H_2PO_4}^- $
$\rm{{H_2PO_4}^- \rightleftharpoons H^+\, + \, {HPO_4}^{2-} }$
$\rm{ {HPO_4}^{2-} \rightleftharpoons H^+\, + \, {PO_4}^{3-}}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

