
Graph the trigonometric equation $ y = 3\cos x $
Answer
524.7k+ views
Hint: If in an equation, there are one or more than one trigonometric ratios [sine $ \left( {\sin } \right) $ , cosine $ \left( {\cos } \right) $ , tangent $ \left( {\tan } \right) $ , cotangent $ \left( {\cot } \right) $ , secant $ \left( {\sec } \right) $ , cosecant $ \left( {\cos ec} \right) $ ] of unknown angles, it is said to be trigonometric equation and here, we have to make a graph of the given trigonometric equation.
Complete step-by-step answer:
To make a graph of the trigonometric equation, we have a function, $ f\left( x \right) = a\cos b\left( {x + c} \right) + d $
On comparing the function $ y = 3\cos x $ with the above function, we have found that only the parameter a, means $ 3 $ will affect our function. Now, let us assume the values of x in the function $ f\left( x \right) $ which is equal to y.
Part-1 Let us assume the value of x be $ 0 $ , then the function $ f\left( x \right) $ becomes,
$ f\left( 0 \right) = 3\cos \left( 0 \right) = 3 \times 1 = 3 $
And we know that, $ f\left( x \right) = y $ , then the value of y becomes $ 3 $ .
Part-2 Let us assume the value of x be $ \dfrac{\pi }{6} $ , then the function $ f\left( x \right) $ becomes,
$ f\left( {\dfrac{\pi }{6}} \right) = 3\cos \left( {\dfrac{\pi }{6}} \right) = 3 \times \left( {\dfrac{{\sqrt 3 }}{2}} \right) = \dfrac{{3\sqrt 3 }}{2} $
And we know that, $ f\left( x \right) = y $ , then the value of y becomes $ \dfrac{{3\sqrt 3 }}{2} $ .
Part-3 Let us assume the value of x be $ \dfrac{\pi }{4} $ , then the function $ f\left( x \right) $ becomes,
$ f\left( {\dfrac{\pi }{4}} \right) = 3\cos \left( {\dfrac{\pi }{4}} \right) = 3 \times \dfrac{1}{{\sqrt 2 }} = \dfrac{3}{{\sqrt 2 }} $
And we know that, $ f\left( x \right) = y $ , then the value of y becomes $ \dfrac{3}{{\sqrt 2 }} $ .
Part-4 Let us assume the value of x be $ \dfrac{\pi }{2} $ , then the function $ f\left( x \right) $ becomes,
$ f\left( {\dfrac{\pi }{2}} \right) = 3\cos \left( {\dfrac{\pi }{2}} \right) = 3 \times 0 = 0 $
And we know that, $ f\left( x \right) = y $ , then the value of y becomes $ 0 $ .
Part-5 Let us assume the value of x be $ \pi $ , then the function $ f\left( x \right) $ becomes,
$ f\left( \pi \right) = 3\cos \left( \pi \right) = 3 \times \left( { - 1} \right) = - 3 $
And we know that, $ f\left( x \right) = y $ , then the value of y becomes $ - 3 $ .
Hence, we have our values of x and y to plot the graph of $ y = 3\cos x $ and the graph is,
Note: To form a graph of cosine function, there is an equation i.e, $ f\left( x \right) = a\cos b\left( {x + c} \right) + d $ , where, a is the amplitude of the function, b affects the period as it is equal to $ \dfrac{{2\pi }}{b} $ , if the value of b increases then the value of period decreases, c is the horizontal shift and d is the principal axis. The graph of the given trigonometric equation is quite easy to solve as only $ 3 $ is affecting the function.
Complete step-by-step answer:
To make a graph of the trigonometric equation, we have a function, $ f\left( x \right) = a\cos b\left( {x + c} \right) + d $
On comparing the function $ y = 3\cos x $ with the above function, we have found that only the parameter a, means $ 3 $ will affect our function. Now, let us assume the values of x in the function $ f\left( x \right) $ which is equal to y.
Part-1 Let us assume the value of x be $ 0 $ , then the function $ f\left( x \right) $ becomes,
$ f\left( 0 \right) = 3\cos \left( 0 \right) = 3 \times 1 = 3 $
And we know that, $ f\left( x \right) = y $ , then the value of y becomes $ 3 $ .
Part-2 Let us assume the value of x be $ \dfrac{\pi }{6} $ , then the function $ f\left( x \right) $ becomes,
$ f\left( {\dfrac{\pi }{6}} \right) = 3\cos \left( {\dfrac{\pi }{6}} \right) = 3 \times \left( {\dfrac{{\sqrt 3 }}{2}} \right) = \dfrac{{3\sqrt 3 }}{2} $
And we know that, $ f\left( x \right) = y $ , then the value of y becomes $ \dfrac{{3\sqrt 3 }}{2} $ .
Part-3 Let us assume the value of x be $ \dfrac{\pi }{4} $ , then the function $ f\left( x \right) $ becomes,
$ f\left( {\dfrac{\pi }{4}} \right) = 3\cos \left( {\dfrac{\pi }{4}} \right) = 3 \times \dfrac{1}{{\sqrt 2 }} = \dfrac{3}{{\sqrt 2 }} $
And we know that, $ f\left( x \right) = y $ , then the value of y becomes $ \dfrac{3}{{\sqrt 2 }} $ .
Part-4 Let us assume the value of x be $ \dfrac{\pi }{2} $ , then the function $ f\left( x \right) $ becomes,
$ f\left( {\dfrac{\pi }{2}} \right) = 3\cos \left( {\dfrac{\pi }{2}} \right) = 3 \times 0 = 0 $
And we know that, $ f\left( x \right) = y $ , then the value of y becomes $ 0 $ .
Part-5 Let us assume the value of x be $ \pi $ , then the function $ f\left( x \right) $ becomes,
$ f\left( \pi \right) = 3\cos \left( \pi \right) = 3 \times \left( { - 1} \right) = - 3 $
And we know that, $ f\left( x \right) = y $ , then the value of y becomes $ - 3 $ .
Hence, we have our values of x and y to plot the graph of $ y = 3\cos x $ and the graph is,
Note: To form a graph of cosine function, there is an equation i.e, $ f\left( x \right) = a\cos b\left( {x + c} \right) + d $ , where, a is the amplitude of the function, b affects the period as it is equal to $ \dfrac{{2\pi }}{b} $ , if the value of b increases then the value of period decreases, c is the horizontal shift and d is the principal axis. The graph of the given trigonometric equation is quite easy to solve as only $ 3 $ is affecting the function.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

