
Gradient of a line perpendicular to the line $3x-2y=5$ is
A. $-\dfrac{2}{3}$
B. $\dfrac{2}{3}$
C. $-\dfrac{3}{2}$
D. $-\dfrac{5}{2}$
Answer
497.1k+ views
Hint: First we will convert the given equation into a general slope-intercept form of a line. The general equation of slope-intercept form of a line is given as $y=mx+c$ where, m is the slope of the line and c is the y-intercept of the line. Then we will use the property that the product of slopes of two lines perpendicular to each other is $-1$ to get the desired answer.
Complete step by step answer:
We have been given an equation of a line $3x-2y=5$.
We have to find the gradient of a line perpendicular to the line $3x-2y=5$.
We know that the slope-intercept form of a line is given by the equation $y=mx+c$ where, m is the slope of the line and c is the y-intercept of the line. Y-intercept of the line is the point where a line crosses the Y-axis.
Now, let us convert the given equation in the general form. Then we will get
$\begin{align}
& \Rightarrow 3x-2y=5 \\
& \Rightarrow 3x-5=2y \\
& \Rightarrow y=\dfrac{3}{2}x-\dfrac{5}{2} \\
\end{align}$
Now, comparing the given equation with the general equation we will get
$\Rightarrow m=\dfrac{3}{2}$ and $\Rightarrow c=-\dfrac{5}{2}$
Now, we know that the product of slopes of two lines perpendicular to each other is $-1$.
So we will get that
$\begin{align}
& \Rightarrow m'\times \dfrac{3}{2}=-1 \\
& \Rightarrow m'=\dfrac{-2}{3} \\
\end{align}$
Hence we get the gradient of a line perpendicular to the line $3x-2y=5$ is $\dfrac{-2}{3}$.
So, the correct answer is “Option A”.
Note: The point to be noted is that while calculating the slope of the line the coefficient of y must be 1. Alternatively we can find the slope and intercept of the given equation by using the graphing method. For this we draw the graph of a given equation which is a straight line and then we can find the slope and intercept of the obtained line.
Complete step by step answer:
We have been given an equation of a line $3x-2y=5$.
We have to find the gradient of a line perpendicular to the line $3x-2y=5$.
We know that the slope-intercept form of a line is given by the equation $y=mx+c$ where, m is the slope of the line and c is the y-intercept of the line. Y-intercept of the line is the point where a line crosses the Y-axis.
Now, let us convert the given equation in the general form. Then we will get
$\begin{align}
& \Rightarrow 3x-2y=5 \\
& \Rightarrow 3x-5=2y \\
& \Rightarrow y=\dfrac{3}{2}x-\dfrac{5}{2} \\
\end{align}$
Now, comparing the given equation with the general equation we will get
$\Rightarrow m=\dfrac{3}{2}$ and $\Rightarrow c=-\dfrac{5}{2}$
Now, we know that the product of slopes of two lines perpendicular to each other is $-1$.
So we will get that
$\begin{align}
& \Rightarrow m'\times \dfrac{3}{2}=-1 \\
& \Rightarrow m'=\dfrac{-2}{3} \\
\end{align}$
Hence we get the gradient of a line perpendicular to the line $3x-2y=5$ is $\dfrac{-2}{3}$.
So, the correct answer is “Option A”.
Note: The point to be noted is that while calculating the slope of the line the coefficient of y must be 1. Alternatively we can find the slope and intercept of the given equation by using the graphing method. For this we draw the graph of a given equation which is a straight line and then we can find the slope and intercept of the obtained line.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

