
Given that x, y$\in $R, solve $4{{x}^{2}}+3xy+\left( 2xy-3{{x}^{2}} \right)i=4{{y}^{2}}-\dfrac{{{x}^{2}}}{2}+\left( 3xy-2{{y}^{2}} \right)i$.
Answer
605.1k+ views
Hint: Given equation is of the form a + ib, where a is real part and imaginary part from the given equation. Frame 2 equation from it. Solve it and get the values of x and y.
Complete step-by-step answer:
We know that a complex no. is a no. that can be expressed in the from a + bi, where a and b are real numbers. Here ‘i’ is a solution of the equation ${{x}^{2}}=-1$ no real no: can satisfy the equation. So ‘i’ is called an imaginary number.
Now from the complex no: a + bi, a is called real part and b is called the imaginary pest. If speaking geometrically, complex no: extends the concept of 1D number line to 2D complex plane by using the horizontal axis for the real pest and the vertical axis for the imaginary part.
Now given to us the expression,
$\left( 4{{x}^{2}}+3xy \right)+\left( 2xy-3{{x}^{2}} \right)i=\left( 4{{y}^{2}}-\dfrac{{{x}^{2}}}{2} \right)+\left( 3xy-2{{y}^{2}} \right)i$
Now let us separate the real part and their imaginary part of the above given expression.
Real part $\Rightarrow \left( 4{{x}^{2}}+3xy \right)=4{{y}^{2}}-\dfrac{{{x}^{2}}}{2}$
Imaginary part $\Rightarrow 2xy-3{{x}^{2}}=3xy-2{{y}^{2}}$
Now let us first take the real part,
$\begin{align}
& 4{{x}^{2}}+3xy=4{{y}^{2}}-\dfrac{{{x}^{2}}}{2} \\
& 4{{x}^{2}}-4{{y}^{2}}+3xy+\dfrac{{{x}^{2}}}{2}=0 \\
& {{x}^{2}}\left( 4+\dfrac{1}{2} \right)-4{{y}^{2}}+3xy=0 \\
& {{x}^{2}}\left( \dfrac{8+1}{2} \right)-4{{y}^{2}}+3xy=0 \\
\end{align}$
$\dfrac{9{{x}^{2}}}{2}-4{{y}^{2}}+3xy=0$…………………..(i)
From the imaginary part, let's simplify it.
$\begin{align}
& 2xy-3{{x}^{2}}=3xy-2{{y}^{2}} \\
& 3{{x}^{2}}-2{{y}^{2}}=-3xy=+2xy \\
& 3{{x}^{2}}-2{{y}^{2}}+xy=0 \\
\end{align}$
i.e., $xy=2{{y}^{2}}-3{{x}^{2}}$…………….(ii)
Now put the volume of xy in equation (i)
\[\begin{align}
&xy=2{{y}^{2}}-3{{x}^{2}} \\
& \dfrac{9{{x}^{2}}}{2}-4{{y}^{2}}-3xy=0 \\
& \dfrac{9{{x}^{2}}}{2}-4{{y}^{2}}-3\left( 2{{y}^{2}}-3{{x}^{2}} \right)=0 \\
\end{align}\]
Let us simplify it
$\begin{align}
& \dfrac{9{{x}^{2}}}{2}-4{{y}^{2}}+6{{y}^{2}}-9{{x}^{2}}=0 \\
& \dfrac{9{{x}^{2}}}{2}-9{{x}^{2}}+2{{y}^{2}}=0 \\
& 9{{x}^{2}}\left[ \dfrac{1}{2}-1 \right]+2{{y}^{2}}=0 \\
& 9{{x}^{2}}\left[ \dfrac{1-2}{2} \right]+2{{y}^{2}}=0 \\
& \dfrac{-9{{x}^{2}}}{2}=-2{{y}^{2}}\Rightarrow 9{{x}^{2}}=4{{y}^{2}} \\
\end{align}$
$\dfrac{{{x}^{2}}}{{{y}^{2}}}=\dfrac{9}{4}$, taking square root on both sides, we get
$\dfrac{x}{y}=\sqrt{\dfrac{9}{4}}=\dfrac{3}{2},\dfrac{x}{y}=\dfrac{3}{2}$
Now multiply the numerator and denominator by k, where k is the proportionality constant
i.e., $\dfrac{x}{y}=\dfrac{3k}{2k}$
Where x = k, $y=\dfrac{3}{2}k$
hence, we got (x, y) $\to \left( k,\dfrac{3}{2}k \right)$
Thus, we got the required values.
Note: As we got the answer in the form of a radio, use a proportionality constant l. don’t leave the answers such and write (x, y)$\to $ (3, 2), which is wrong.
Complete step-by-step answer:
We know that a complex no. is a no. that can be expressed in the from a + bi, where a and b are real numbers. Here ‘i’ is a solution of the equation ${{x}^{2}}=-1$ no real no: can satisfy the equation. So ‘i’ is called an imaginary number.
Now from the complex no: a + bi, a is called real part and b is called the imaginary pest. If speaking geometrically, complex no: extends the concept of 1D number line to 2D complex plane by using the horizontal axis for the real pest and the vertical axis for the imaginary part.
Now given to us the expression,
$\left( 4{{x}^{2}}+3xy \right)+\left( 2xy-3{{x}^{2}} \right)i=\left( 4{{y}^{2}}-\dfrac{{{x}^{2}}}{2} \right)+\left( 3xy-2{{y}^{2}} \right)i$
Now let us separate the real part and their imaginary part of the above given expression.
Real part $\Rightarrow \left( 4{{x}^{2}}+3xy \right)=4{{y}^{2}}-\dfrac{{{x}^{2}}}{2}$
Imaginary part $\Rightarrow 2xy-3{{x}^{2}}=3xy-2{{y}^{2}}$
Now let us first take the real part,
$\begin{align}
& 4{{x}^{2}}+3xy=4{{y}^{2}}-\dfrac{{{x}^{2}}}{2} \\
& 4{{x}^{2}}-4{{y}^{2}}+3xy+\dfrac{{{x}^{2}}}{2}=0 \\
& {{x}^{2}}\left( 4+\dfrac{1}{2} \right)-4{{y}^{2}}+3xy=0 \\
& {{x}^{2}}\left( \dfrac{8+1}{2} \right)-4{{y}^{2}}+3xy=0 \\
\end{align}$
$\dfrac{9{{x}^{2}}}{2}-4{{y}^{2}}+3xy=0$…………………..(i)
From the imaginary part, let's simplify it.
$\begin{align}
& 2xy-3{{x}^{2}}=3xy-2{{y}^{2}} \\
& 3{{x}^{2}}-2{{y}^{2}}=-3xy=+2xy \\
& 3{{x}^{2}}-2{{y}^{2}}+xy=0 \\
\end{align}$
i.e., $xy=2{{y}^{2}}-3{{x}^{2}}$…………….(ii)
Now put the volume of xy in equation (i)
\[\begin{align}
&xy=2{{y}^{2}}-3{{x}^{2}} \\
& \dfrac{9{{x}^{2}}}{2}-4{{y}^{2}}-3xy=0 \\
& \dfrac{9{{x}^{2}}}{2}-4{{y}^{2}}-3\left( 2{{y}^{2}}-3{{x}^{2}} \right)=0 \\
\end{align}\]
Let us simplify it
$\begin{align}
& \dfrac{9{{x}^{2}}}{2}-4{{y}^{2}}+6{{y}^{2}}-9{{x}^{2}}=0 \\
& \dfrac{9{{x}^{2}}}{2}-9{{x}^{2}}+2{{y}^{2}}=0 \\
& 9{{x}^{2}}\left[ \dfrac{1}{2}-1 \right]+2{{y}^{2}}=0 \\
& 9{{x}^{2}}\left[ \dfrac{1-2}{2} \right]+2{{y}^{2}}=0 \\
& \dfrac{-9{{x}^{2}}}{2}=-2{{y}^{2}}\Rightarrow 9{{x}^{2}}=4{{y}^{2}} \\
\end{align}$
$\dfrac{{{x}^{2}}}{{{y}^{2}}}=\dfrac{9}{4}$, taking square root on both sides, we get
$\dfrac{x}{y}=\sqrt{\dfrac{9}{4}}=\dfrac{3}{2},\dfrac{x}{y}=\dfrac{3}{2}$
Now multiply the numerator and denominator by k, where k is the proportionality constant
i.e., $\dfrac{x}{y}=\dfrac{3k}{2k}$
Where x = k, $y=\dfrac{3}{2}k$
hence, we got (x, y) $\to \left( k,\dfrac{3}{2}k \right)$
Thus, we got the required values.
Note: As we got the answer in the form of a radio, use a proportionality constant l. don’t leave the answers such and write (x, y)$\to $ (3, 2), which is wrong.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

