
Given N = 10, \[\sum{{{x}_{i}}=60}\] and \[\sum{{{x}_{i}}^{2}=1000}\] . The standard deviation is
Answer
562.8k+ views
Hint: Now we know that the formula for standard deviation is $\sigma =\sqrt{\dfrac{\sum\limits_{1}^{n}{{{\left( {{x}_{i}}-\mu \right)}^{2}}}}{N}}$ Now we will try to write the equation in terms of ${{\sigma }^{2}}$ and then open the brackets of numerator by formula ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ Now we know that \[\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}} \right)}}{N}=\mu \] and \[\sum\limits_{1}^{n}{1=N}\] hence using this we will get a simplified equation for standard deviation. Now out of the given data we will find mean by the formula \[\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}} \right)}}{N}=\mu \] and then substitute the values in the obtained equation. Hence we can easily find the standard deviation of the given data.
Complete step-by-step answer:
Now we are given with N = 10, \[\sum{{{x}_{i}}=60}\] and \[\sum{{{x}_{i}}^{2}=1000}\]
Now we know that standard deviation is given by $\sigma =\sqrt{\dfrac{\sum\limits_{1}^{n}{{{\left( {{x}_{i}}-\mu \right)}^{2}}}}{N}}$ where $\mu $ is the mean of data.
Hence we can say that ${{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{{{\left( {{x}_{i}}-\mu \right)}^{2}}}}{N}$
Now let us simplify the equation above.
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Using this in the numerator we get.
\[{{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2}+{{\mu }^{2}}-2{{x}_{i}}\mu \right)}}{N}\]
Now let us open the summation. Hence we get
\[{{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}+\sum\limits_{1}^{n}{\left( {{\mu }^{2}} \right)}-\sum\limits_{1}^{n}{\left( 2{{x}_{i}}\mu \right)}}{N}\]
Now we know that $\mu $ is the mean and is constant. Hence we can take it out of summation.
\[\begin{align}
& {{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}+{{\mu }^{2}}\sum\limits_{1}^{n}{1}-2\mu \sum\limits_{1}^{n}{\left( {{x}_{i}} \right)}}{N} \\
& \Rightarrow {{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}}{N}+\dfrac{{{\mu }^{2}}\sum\limits_{1}^{n}{1}}{N}-2\mu \dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}} \right)}}{N} \\
\end{align}\]
Now we know that \[\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}} \right)}}{N}=\mu \] and \[\sum\limits_{1}^{n}{1=N}\] . Hence we get
\[\begin{align}
& {{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}}{N}+\dfrac{{{\mu }^{2}}N}{N}-2\mu \mu \\
& \Rightarrow {{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}}{N}-{{\mu }^{2}} \\
\end{align}\]
\[{{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}}{N}-{{\mu }^{2}}.................\left( 1 \right)\]
Now we have the reduced simplified formula for standard deviation.
Now we know that N = 10 and $\sum{{{x}_{i}}=60}$
Hence we can say that mean $\mu =\dfrac{\sum{{{x}_{i}}}}{N}=\dfrac{60}{10}=6$
Now substituting the values of $\mu =6$ , N = 10 and \[\sum{{{x}_{i}}^{2}=1000}\] in equation (1) we get.
\[\begin{align}
& {{\sigma }^{2}}=\dfrac{1000}{10}-{{\left( 6 \right)}^{2}} \\
& \Rightarrow {{\sigma }^{2}}=100-36 \\
& \Rightarrow {{\sigma }^{2}}=64 \\
& \Rightarrow \sigma =8 \\
\end{align}\]
Hence we get the standard deviation is equal to 8.
Note: The formula for standard deviation is ${{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{{{\left( {{x}_{i}}-\mu \right)}^{2}}}}{N}$ . after some algebraic manipulation we arrive at an equivalent formula \[{{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}}{N}-{{\mu }^{2}}\] . We can directly use this formula for faster calculation as this is a general alternate formula for standard deviation. Though it is easy to derive the equation too.
Complete step-by-step answer:
Now we are given with N = 10, \[\sum{{{x}_{i}}=60}\] and \[\sum{{{x}_{i}}^{2}=1000}\]
Now we know that standard deviation is given by $\sigma =\sqrt{\dfrac{\sum\limits_{1}^{n}{{{\left( {{x}_{i}}-\mu \right)}^{2}}}}{N}}$ where $\mu $ is the mean of data.
Hence we can say that ${{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{{{\left( {{x}_{i}}-\mu \right)}^{2}}}}{N}$
Now let us simplify the equation above.
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Using this in the numerator we get.
\[{{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2}+{{\mu }^{2}}-2{{x}_{i}}\mu \right)}}{N}\]
Now let us open the summation. Hence we get
\[{{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}+\sum\limits_{1}^{n}{\left( {{\mu }^{2}} \right)}-\sum\limits_{1}^{n}{\left( 2{{x}_{i}}\mu \right)}}{N}\]
Now we know that $\mu $ is the mean and is constant. Hence we can take it out of summation.
\[\begin{align}
& {{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}+{{\mu }^{2}}\sum\limits_{1}^{n}{1}-2\mu \sum\limits_{1}^{n}{\left( {{x}_{i}} \right)}}{N} \\
& \Rightarrow {{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}}{N}+\dfrac{{{\mu }^{2}}\sum\limits_{1}^{n}{1}}{N}-2\mu \dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}} \right)}}{N} \\
\end{align}\]
Now we know that \[\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}} \right)}}{N}=\mu \] and \[\sum\limits_{1}^{n}{1=N}\] . Hence we get
\[\begin{align}
& {{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}}{N}+\dfrac{{{\mu }^{2}}N}{N}-2\mu \mu \\
& \Rightarrow {{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}}{N}-{{\mu }^{2}} \\
\end{align}\]
\[{{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}}{N}-{{\mu }^{2}}.................\left( 1 \right)\]
Now we have the reduced simplified formula for standard deviation.
Now we know that N = 10 and $\sum{{{x}_{i}}=60}$
Hence we can say that mean $\mu =\dfrac{\sum{{{x}_{i}}}}{N}=\dfrac{60}{10}=6$
Now substituting the values of $\mu =6$ , N = 10 and \[\sum{{{x}_{i}}^{2}=1000}\] in equation (1) we get.
\[\begin{align}
& {{\sigma }^{2}}=\dfrac{1000}{10}-{{\left( 6 \right)}^{2}} \\
& \Rightarrow {{\sigma }^{2}}=100-36 \\
& \Rightarrow {{\sigma }^{2}}=64 \\
& \Rightarrow \sigma =8 \\
\end{align}\]
Hence we get the standard deviation is equal to 8.
Note: The formula for standard deviation is ${{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{{{\left( {{x}_{i}}-\mu \right)}^{2}}}}{N}$ . after some algebraic manipulation we arrive at an equivalent formula \[{{\sigma }^{2}}=\dfrac{\sum\limits_{1}^{n}{\left( {{x}_{i}}^{2} \right)}}{N}-{{\mu }^{2}}\] . We can directly use this formula for faster calculation as this is a general alternate formula for standard deviation. Though it is easy to derive the equation too.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

