
Given \[{{a}^{2}}+{{b}^{2}}={{c}^{2}}\]. Prove that \[{{\log }_{b+c}}a+{{\log }_{c-b}}a=2{{\log }_{b+c}}a{{\log }_{c-b}}a\] for all a > 0, a \[\ne \] 1.
Answer
555k+ views
Hint: Consider the L.H.S of the term which we need to prove and apply the basic change rule given as \[{{\log }_{n}}m=\dfrac{1}{{{\log }_{m}}n}\] to change the two logarithmic terms. Now, take L.C.M of the two terms and in the numerator apply the formula of logarithm given as, \[{{\log }_{x}}p+{{\log }_{x}}q={{\log }_{x}}\left( pq \right)\] to simplify. Use the given relation: - \[{{a}^{2}}+{{b}^{2}}={{c}^{2}}\] and again apply the base change rule to take the denominator terms to the numerator and get the answer.
Complete step-by-step solution
Here, we have been provided a relation: - \[{{a}^{2}}+{{b}^{2}}={{c}^{2}}\] and we have to prove \[{{\log }_{b+c}}a+{{\log }_{c-b}}a=2{{\log }_{b+c}}a{{\log }_{c-b}}a\].
Now, considering the L.H.S of the expression that we need to prove, we get,
\[\Rightarrow \] L.H.S = \[{{\log }_{b+c}}a+{{\log }_{c-b}}a\]
Apply the base change rule of logarithm given as: - \[{{\log }_{n}}m=\dfrac{1}{{{\log }_{m}}n}\], we get,
\[\Rightarrow \] L.H.S = \[\dfrac{1}{{{\log }_{a}}\left( b+c \right)}+\dfrac{1}{{{\log }_{a}}\left( c-b \right)}\]
Taking L.C.M we get,
\[\Rightarrow \] L.H.S = \[\dfrac{{{\log }_{a}}\left( b+c \right)+{{\log }_{a}}\left( c-b \right)}{{{\log }_{a}}\left( b+c \right).{{\log }_{a}}\left( c-b \right)}\]
Now, applying the formula: - \[{{\log }_{x}}p+{{\log }_{x}}q={{\log }_{x}}\left( pq \right)\] in the numerator of the above expression, we get,
\[\Rightarrow \] L.H.S = \[\dfrac{{{\log }_{a}}\left[ \left( b+c \right).\left( c-b \right) \right]}{{{\log }_{a}}\left( b+c \right).{{\log }_{a}}\left( c-b \right)}\]
Applying the algebraic identity: - \[\left( c+b \right)\left( c-b \right)={{c}^{2}}-{{b}^{2}}\], we get,
\[\Rightarrow \] L.H.S = \[\dfrac{{{\log }_{a}}\left[ \left( {{c}^{2}}-{{b}^{2}} \right) \right]}{{{\log }_{a}}\left( b+c \right).{{\log }_{a}}\left( c-b \right)}\] - (1)
Here, we have been provided with the relation: - \[{{a}^{2}}+{{b}^{2}}={{c}^{2}}\], so we have,
\[\begin{align}
& \Rightarrow {{a}^{2}}={{c}^{2}}-{{b}^{2}} \\
& \Rightarrow {{c}^{2}}-{{b}^{2}}={{a}^{2}} \\
\end{align}\]
Therefore, substituting the value of above relation in equation (1), we get,
\[\Rightarrow \] L.H.S = \[\dfrac{{{\log }_{a}}\left( {{a}^{2}} \right)}{{{\log }_{a}}\left( b+c \right).{{\log }_{a}}\left( c-b \right)}\]
Using the formula: - \[{{\log }_{m}}\left( {{n}^{y}} \right)=y{{\log }_{m}}n\], we get,
\[\Rightarrow \] L.H.S = \[\dfrac{2{{\log }_{a}}a}{{{\log }_{a}}\left( b+c \right).{{\log }_{a}}\left( c-b \right)}\]
Now, we know that if the base and argument of logarithm is the same then its value is 1. So, we have,
\[\Rightarrow \] L.H.S = \[\dfrac{2}{{{\log }_{a}}\left( b+c \right).{{\log }_{a}}\left( c-b \right)}\]
\[\Rightarrow \] L.H.S = \[2\times \dfrac{1}{{{\log }_{a}}\left( b+c \right)}\times \dfrac{1}{{{\log }_{a}}\left( c-b \right)}\]
Again, applying the base change rule, we get,
\[\Rightarrow \] L.H.S = \[2\times {{\log }_{\left( b+c \right)}}a\times {{\log }_{\left( c-b \right)}}a\]
\[\Rightarrow \] L.H.S = \[2{{\log }_{\left( b+c \right)}}a{{\log }_{\left( c-b \right)}}a\]
\[\Rightarrow \] L.H.S = R.H.S
Hence proved
Note: One may note that we have been provided with a condition regarding the value of ‘a’ in the question, that is a > 0 and a \[\ne \] 1. This condition is very important because it defines the logarithm. It says that the base of a logarithm cannot be negative, 0 or 1. Similarly, the argument cannot be negative or 0, however, it can be 1. You must remember all the important properties of the logarithm that are used above in the solution otherwise it will be very difficult to solve the question.
Complete step-by-step solution
Here, we have been provided a relation: - \[{{a}^{2}}+{{b}^{2}}={{c}^{2}}\] and we have to prove \[{{\log }_{b+c}}a+{{\log }_{c-b}}a=2{{\log }_{b+c}}a{{\log }_{c-b}}a\].
Now, considering the L.H.S of the expression that we need to prove, we get,
\[\Rightarrow \] L.H.S = \[{{\log }_{b+c}}a+{{\log }_{c-b}}a\]
Apply the base change rule of logarithm given as: - \[{{\log }_{n}}m=\dfrac{1}{{{\log }_{m}}n}\], we get,
\[\Rightarrow \] L.H.S = \[\dfrac{1}{{{\log }_{a}}\left( b+c \right)}+\dfrac{1}{{{\log }_{a}}\left( c-b \right)}\]
Taking L.C.M we get,
\[\Rightarrow \] L.H.S = \[\dfrac{{{\log }_{a}}\left( b+c \right)+{{\log }_{a}}\left( c-b \right)}{{{\log }_{a}}\left( b+c \right).{{\log }_{a}}\left( c-b \right)}\]
Now, applying the formula: - \[{{\log }_{x}}p+{{\log }_{x}}q={{\log }_{x}}\left( pq \right)\] in the numerator of the above expression, we get,
\[\Rightarrow \] L.H.S = \[\dfrac{{{\log }_{a}}\left[ \left( b+c \right).\left( c-b \right) \right]}{{{\log }_{a}}\left( b+c \right).{{\log }_{a}}\left( c-b \right)}\]
Applying the algebraic identity: - \[\left( c+b \right)\left( c-b \right)={{c}^{2}}-{{b}^{2}}\], we get,
\[\Rightarrow \] L.H.S = \[\dfrac{{{\log }_{a}}\left[ \left( {{c}^{2}}-{{b}^{2}} \right) \right]}{{{\log }_{a}}\left( b+c \right).{{\log }_{a}}\left( c-b \right)}\] - (1)
Here, we have been provided with the relation: - \[{{a}^{2}}+{{b}^{2}}={{c}^{2}}\], so we have,
\[\begin{align}
& \Rightarrow {{a}^{2}}={{c}^{2}}-{{b}^{2}} \\
& \Rightarrow {{c}^{2}}-{{b}^{2}}={{a}^{2}} \\
\end{align}\]
Therefore, substituting the value of above relation in equation (1), we get,
\[\Rightarrow \] L.H.S = \[\dfrac{{{\log }_{a}}\left( {{a}^{2}} \right)}{{{\log }_{a}}\left( b+c \right).{{\log }_{a}}\left( c-b \right)}\]
Using the formula: - \[{{\log }_{m}}\left( {{n}^{y}} \right)=y{{\log }_{m}}n\], we get,
\[\Rightarrow \] L.H.S = \[\dfrac{2{{\log }_{a}}a}{{{\log }_{a}}\left( b+c \right).{{\log }_{a}}\left( c-b \right)}\]
Now, we know that if the base and argument of logarithm is the same then its value is 1. So, we have,
\[\Rightarrow \] L.H.S = \[\dfrac{2}{{{\log }_{a}}\left( b+c \right).{{\log }_{a}}\left( c-b \right)}\]
\[\Rightarrow \] L.H.S = \[2\times \dfrac{1}{{{\log }_{a}}\left( b+c \right)}\times \dfrac{1}{{{\log }_{a}}\left( c-b \right)}\]
Again, applying the base change rule, we get,
\[\Rightarrow \] L.H.S = \[2\times {{\log }_{\left( b+c \right)}}a\times {{\log }_{\left( c-b \right)}}a\]
\[\Rightarrow \] L.H.S = \[2{{\log }_{\left( b+c \right)}}a{{\log }_{\left( c-b \right)}}a\]
\[\Rightarrow \] L.H.S = R.H.S
Hence proved
Note: One may note that we have been provided with a condition regarding the value of ‘a’ in the question, that is a > 0 and a \[\ne \] 1. This condition is very important because it defines the logarithm. It says that the base of a logarithm cannot be negative, 0 or 1. Similarly, the argument cannot be negative or 0, however, it can be 1. You must remember all the important properties of the logarithm that are used above in the solution otherwise it will be very difficult to solve the question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

