
Get x, y from below equation and find value of y – x, where x and y are real numbers
\[{{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27},\left( i=\sqrt{-1} \right)\]
(a)-85
(b)85
(c)-91
(d)91
Answer
613.5k+ views
Hint: First solve the left hand side like a normal algebraic equation. Then multiply and divide by 27 then compare with the right hand side to find values of x, y.
You can use distributive property:
b.(a + c) = b.a + b.c
Complete step-by-step solution -
First we need to separate out the left hand side.
\[L.H.S.={{\left( -2-\dfrac{1}{3}i \right)}^{3}}\]
Now write it as a multiplication of 3 same terms.
\[{{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\left( -2-\dfrac{1}{3}i \right).\left( -2-\dfrac{1}{3}i \right).\left( -2-\dfrac{1}{3}i \right)\]
By treating 2 multiplied terms as one entity we can apply distributive law:
b.(a + c) = b.a + b.c
By applying above law, we get:
\[=-2.\left( -2-\dfrac{i}{3} \right).\left( -2-\dfrac{i}{3} \right)-\dfrac{i}{3}.\left( -2-\dfrac{i}{3} \right).\left( -2-\dfrac{i}{3} \right)\]
Now you can take one term as common and apply distributive law again.
\[=\left( -2-\dfrac{i}{3} \right)\left( -2.\left( -2-\dfrac{i}{3} \right)-\dfrac{i}{3}.\left( -2-\dfrac{i}{3} \right) \right)\]
By applying distributive law twice inside the bracket we get:
\[=\left( -2-\dfrac{i}{3} \right)\left( \left( -2.-2 \right)+\left( -2.\dfrac{-i}{3} \right)+\left( -2.\dfrac{-i}{3} \right)+\left( \dfrac{-i}{3}.\dfrac{-i}{3} \right) \right)\]
By simplifying, we get:
\[\begin{align}
& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{2i}{3}+\dfrac{2i}{3}+\dfrac{{{i}^{2}}}{9} \right) \\
& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{4i}{3}+\dfrac{{{i}^{2}}}{9} \right) \\
\end{align}\]
We know:
i is solution of equation:
\[{{i}^{2}}=-1\]
By substituting above equation and simplifying, we get:
\[\begin{align}
& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{4i}{3}-\dfrac{1}{9} \right) \\
& =\left( -2-\dfrac{i}{3} \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right) \\
\end{align}\]
By treating one of the both terms as one entity apply distributive law.
b.(a + c) = b.a + b.c
\[=\left( -2 \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right)+\left( -\dfrac{i}{3} \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right)\]
By applying distributive law twice with each term, we get:
\[=\left( -2.\dfrac{35}{9} \right)+\left( -2.\dfrac{4i}{3} \right)+\left( \dfrac{-i}{3}.\dfrac{35}{9} \right)+\left( \dfrac{-i}{3}.\dfrac{4i}{3} \right)\]
We know,
i is solution of equation:
\[{{i}^{2}}=-1\]
By substituting above equation and simplifying, we get:
\[=\left( -\dfrac{70}{9} \right)+\left( \dfrac{-8i}{3} \right)+\left( \dfrac{-35i}{27} \right)+\left( \dfrac{4}{9} \right)\]
Now adding the real terms and imaginary terms separately, we get:
\[\begin{align}
& =\left( -\dfrac{66}{9} \right)+\left( \dfrac{-107i}{27} \right) \\
& =\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right) \\
\end{align}\]
Finally,
\[\text{left hand side = }\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right)\text{ }\]
Now taking right hand side into consideration, we get:
\[\text{right hand side = }\dfrac{x+iy}{27}\]
By separating real and imaginary terms, we get:
\[\text{right hand side = }\dfrac{x}{27}+\dfrac{iy}{27}\]
By equating left hand side and right hand side, we get:
\[\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right)\text{=}\dfrac{x}{27}\text{+}\dfrac{iy}{27}\text{ }\]
By equating real terms, we get:
\[\dfrac{x}{27}=-\dfrac{22}{3}\]
By multiplying 27 on both sides, we get:
\[\begin{align}
& \dfrac{x}{27}\times 27=\dfrac{-22}{3}\times 27 \\
& \\
\end{align}\]
By equating imaginary terms, we get:
\[\dfrac{iy}{27}=-\dfrac{107i}{27}\]
By multiplying 27 on both sides and cancelling i, we get:
\[\begin{align}
& \dfrac{iy}{27}\times 27=\dfrac{-107i}{27}\times 27 \\
& \\
\end{align}\]
We need y – x.
By above values we can say:
y – x = -107 – (-198)
= -107 + 198
= 91
\[\therefore \]The value of y – x is 91.
Option (d) is correct.
Note: Don’t take the left hand side directly, first you have to multiply 27 or else you’ll get a different answer which is also present in options. This way you may lead to the wrong answer.
Alternative method is to apply a algebraic identity:
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+3ab\left( a+b \right)+{{b}^{3}}\].
You can use distributive property:
b.(a + c) = b.a + b.c
Complete step-by-step solution -
First we need to separate out the left hand side.
\[L.H.S.={{\left( -2-\dfrac{1}{3}i \right)}^{3}}\]
Now write it as a multiplication of 3 same terms.
\[{{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\left( -2-\dfrac{1}{3}i \right).\left( -2-\dfrac{1}{3}i \right).\left( -2-\dfrac{1}{3}i \right)\]
By treating 2 multiplied terms as one entity we can apply distributive law:
b.(a + c) = b.a + b.c
By applying above law, we get:
\[=-2.\left( -2-\dfrac{i}{3} \right).\left( -2-\dfrac{i}{3} \right)-\dfrac{i}{3}.\left( -2-\dfrac{i}{3} \right).\left( -2-\dfrac{i}{3} \right)\]
Now you can take one term as common and apply distributive law again.
\[=\left( -2-\dfrac{i}{3} \right)\left( -2.\left( -2-\dfrac{i}{3} \right)-\dfrac{i}{3}.\left( -2-\dfrac{i}{3} \right) \right)\]
By applying distributive law twice inside the bracket we get:
\[=\left( -2-\dfrac{i}{3} \right)\left( \left( -2.-2 \right)+\left( -2.\dfrac{-i}{3} \right)+\left( -2.\dfrac{-i}{3} \right)+\left( \dfrac{-i}{3}.\dfrac{-i}{3} \right) \right)\]
By simplifying, we get:
\[\begin{align}
& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{2i}{3}+\dfrac{2i}{3}+\dfrac{{{i}^{2}}}{9} \right) \\
& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{4i}{3}+\dfrac{{{i}^{2}}}{9} \right) \\
\end{align}\]
We know:
i is solution of equation:
\[{{i}^{2}}=-1\]
By substituting above equation and simplifying, we get:
\[\begin{align}
& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{4i}{3}-\dfrac{1}{9} \right) \\
& =\left( -2-\dfrac{i}{3} \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right) \\
\end{align}\]
By treating one of the both terms as one entity apply distributive law.
b.(a + c) = b.a + b.c
\[=\left( -2 \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right)+\left( -\dfrac{i}{3} \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right)\]
By applying distributive law twice with each term, we get:
\[=\left( -2.\dfrac{35}{9} \right)+\left( -2.\dfrac{4i}{3} \right)+\left( \dfrac{-i}{3}.\dfrac{35}{9} \right)+\left( \dfrac{-i}{3}.\dfrac{4i}{3} \right)\]
We know,
i is solution of equation:
\[{{i}^{2}}=-1\]
By substituting above equation and simplifying, we get:
\[=\left( -\dfrac{70}{9} \right)+\left( \dfrac{-8i}{3} \right)+\left( \dfrac{-35i}{27} \right)+\left( \dfrac{4}{9} \right)\]
Now adding the real terms and imaginary terms separately, we get:
\[\begin{align}
& =\left( -\dfrac{66}{9} \right)+\left( \dfrac{-107i}{27} \right) \\
& =\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right) \\
\end{align}\]
Finally,
\[\text{left hand side = }\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right)\text{ }\]
Now taking right hand side into consideration, we get:
\[\text{right hand side = }\dfrac{x+iy}{27}\]
By separating real and imaginary terms, we get:
\[\text{right hand side = }\dfrac{x}{27}+\dfrac{iy}{27}\]
By equating left hand side and right hand side, we get:
\[\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right)\text{=}\dfrac{x}{27}\text{+}\dfrac{iy}{27}\text{ }\]
By equating real terms, we get:
\[\dfrac{x}{27}=-\dfrac{22}{3}\]
By multiplying 27 on both sides, we get:
\[\begin{align}
& \dfrac{x}{27}\times 27=\dfrac{-22}{3}\times 27 \\
& \\
\end{align}\]
By equating imaginary terms, we get:
\[\dfrac{iy}{27}=-\dfrac{107i}{27}\]
By multiplying 27 on both sides and cancelling i, we get:
\[\begin{align}
& \dfrac{iy}{27}\times 27=\dfrac{-107i}{27}\times 27 \\
& \\
\end{align}\]
We need y – x.
By above values we can say:
y – x = -107 – (-198)
= -107 + 198
= 91
\[\therefore \]The value of y – x is 91.
Option (d) is correct.
Note: Don’t take the left hand side directly, first you have to multiply 27 or else you’ll get a different answer which is also present in options. This way you may lead to the wrong answer.
Alternative method is to apply a algebraic identity:
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+3ab\left( a+b \right)+{{b}^{3}}\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

