
Get x, y from below equation and find value of y – x, where x and y are real numbers
\[{{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27},\left( i=\sqrt{-1} \right)\]
(a)-85
(b)85
(c)-91
(d)91
Answer
514.8k+ views
Hint: First solve the left hand side like a normal algebraic equation. Then multiply and divide by 27 then compare with the right hand side to find values of x, y.
You can use distributive property:
b.(a + c) = b.a + b.c
Complete step-by-step solution -
First we need to separate out the left hand side.
\[L.H.S.={{\left( -2-\dfrac{1}{3}i \right)}^{3}}\]
Now write it as a multiplication of 3 same terms.
\[{{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\left( -2-\dfrac{1}{3}i \right).\left( -2-\dfrac{1}{3}i \right).\left( -2-\dfrac{1}{3}i \right)\]
By treating 2 multiplied terms as one entity we can apply distributive law:
b.(a + c) = b.a + b.c
By applying above law, we get:
\[=-2.\left( -2-\dfrac{i}{3} \right).\left( -2-\dfrac{i}{3} \right)-\dfrac{i}{3}.\left( -2-\dfrac{i}{3} \right).\left( -2-\dfrac{i}{3} \right)\]
Now you can take one term as common and apply distributive law again.
\[=\left( -2-\dfrac{i}{3} \right)\left( -2.\left( -2-\dfrac{i}{3} \right)-\dfrac{i}{3}.\left( -2-\dfrac{i}{3} \right) \right)\]
By applying distributive law twice inside the bracket we get:
\[=\left( -2-\dfrac{i}{3} \right)\left( \left( -2.-2 \right)+\left( -2.\dfrac{-i}{3} \right)+\left( -2.\dfrac{-i}{3} \right)+\left( \dfrac{-i}{3}.\dfrac{-i}{3} \right) \right)\]
By simplifying, we get:
\[\begin{align}
& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{2i}{3}+\dfrac{2i}{3}+\dfrac{{{i}^{2}}}{9} \right) \\
& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{4i}{3}+\dfrac{{{i}^{2}}}{9} \right) \\
\end{align}\]
We know:
i is solution of equation:
\[{{i}^{2}}=-1\]
By substituting above equation and simplifying, we get:
\[\begin{align}
& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{4i}{3}-\dfrac{1}{9} \right) \\
& =\left( -2-\dfrac{i}{3} \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right) \\
\end{align}\]
By treating one of the both terms as one entity apply distributive law.
b.(a + c) = b.a + b.c
\[=\left( -2 \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right)+\left( -\dfrac{i}{3} \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right)\]
By applying distributive law twice with each term, we get:
\[=\left( -2.\dfrac{35}{9} \right)+\left( -2.\dfrac{4i}{3} \right)+\left( \dfrac{-i}{3}.\dfrac{35}{9} \right)+\left( \dfrac{-i}{3}.\dfrac{4i}{3} \right)\]
We know,
i is solution of equation:
\[{{i}^{2}}=-1\]
By substituting above equation and simplifying, we get:
\[=\left( -\dfrac{70}{9} \right)+\left( \dfrac{-8i}{3} \right)+\left( \dfrac{-35i}{27} \right)+\left( \dfrac{4}{9} \right)\]
Now adding the real terms and imaginary terms separately, we get:
\[\begin{align}
& =\left( -\dfrac{66}{9} \right)+\left( \dfrac{-107i}{27} \right) \\
& =\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right) \\
\end{align}\]
Finally,
\[\text{left hand side = }\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right)\text{ }\]
Now taking right hand side into consideration, we get:
\[\text{right hand side = }\dfrac{x+iy}{27}\]
By separating real and imaginary terms, we get:
\[\text{right hand side = }\dfrac{x}{27}+\dfrac{iy}{27}\]
By equating left hand side and right hand side, we get:
\[\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right)\text{=}\dfrac{x}{27}\text{+}\dfrac{iy}{27}\text{ }\]
By equating real terms, we get:
\[\dfrac{x}{27}=-\dfrac{22}{3}\]
By multiplying 27 on both sides, we get:
\[\begin{align}
& \dfrac{x}{27}\times 27=\dfrac{-22}{3}\times 27 \\
& \\
\end{align}\]
By equating imaginary terms, we get:
\[\dfrac{iy}{27}=-\dfrac{107i}{27}\]
By multiplying 27 on both sides and cancelling i, we get:
\[\begin{align}
& \dfrac{iy}{27}\times 27=\dfrac{-107i}{27}\times 27 \\
& \\
\end{align}\]
We need y – x.
By above values we can say:
y – x = -107 – (-198)
= -107 + 198
= 91
\[\therefore \]The value of y – x is 91.
Option (d) is correct.
Note: Don’t take the left hand side directly, first you have to multiply 27 or else you’ll get a different answer which is also present in options. This way you may lead to the wrong answer.
Alternative method is to apply a algebraic identity:
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+3ab\left( a+b \right)+{{b}^{3}}\].
You can use distributive property:
b.(a + c) = b.a + b.c
Complete step-by-step solution -
First we need to separate out the left hand side.
\[L.H.S.={{\left( -2-\dfrac{1}{3}i \right)}^{3}}\]
Now write it as a multiplication of 3 same terms.
\[{{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\left( -2-\dfrac{1}{3}i \right).\left( -2-\dfrac{1}{3}i \right).\left( -2-\dfrac{1}{3}i \right)\]
By treating 2 multiplied terms as one entity we can apply distributive law:
b.(a + c) = b.a + b.c
By applying above law, we get:
\[=-2.\left( -2-\dfrac{i}{3} \right).\left( -2-\dfrac{i}{3} \right)-\dfrac{i}{3}.\left( -2-\dfrac{i}{3} \right).\left( -2-\dfrac{i}{3} \right)\]
Now you can take one term as common and apply distributive law again.
\[=\left( -2-\dfrac{i}{3} \right)\left( -2.\left( -2-\dfrac{i}{3} \right)-\dfrac{i}{3}.\left( -2-\dfrac{i}{3} \right) \right)\]
By applying distributive law twice inside the bracket we get:
\[=\left( -2-\dfrac{i}{3} \right)\left( \left( -2.-2 \right)+\left( -2.\dfrac{-i}{3} \right)+\left( -2.\dfrac{-i}{3} \right)+\left( \dfrac{-i}{3}.\dfrac{-i}{3} \right) \right)\]
By simplifying, we get:
\[\begin{align}
& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{2i}{3}+\dfrac{2i}{3}+\dfrac{{{i}^{2}}}{9} \right) \\
& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{4i}{3}+\dfrac{{{i}^{2}}}{9} \right) \\
\end{align}\]
We know:
i is solution of equation:
\[{{i}^{2}}=-1\]
By substituting above equation and simplifying, we get:
\[\begin{align}
& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{4i}{3}-\dfrac{1}{9} \right) \\
& =\left( -2-\dfrac{i}{3} \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right) \\
\end{align}\]
By treating one of the both terms as one entity apply distributive law.
b.(a + c) = b.a + b.c
\[=\left( -2 \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right)+\left( -\dfrac{i}{3} \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right)\]
By applying distributive law twice with each term, we get:
\[=\left( -2.\dfrac{35}{9} \right)+\left( -2.\dfrac{4i}{3} \right)+\left( \dfrac{-i}{3}.\dfrac{35}{9} \right)+\left( \dfrac{-i}{3}.\dfrac{4i}{3} \right)\]
We know,
i is solution of equation:
\[{{i}^{2}}=-1\]
By substituting above equation and simplifying, we get:
\[=\left( -\dfrac{70}{9} \right)+\left( \dfrac{-8i}{3} \right)+\left( \dfrac{-35i}{27} \right)+\left( \dfrac{4}{9} \right)\]
Now adding the real terms and imaginary terms separately, we get:
\[\begin{align}
& =\left( -\dfrac{66}{9} \right)+\left( \dfrac{-107i}{27} \right) \\
& =\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right) \\
\end{align}\]
Finally,
\[\text{left hand side = }\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right)\text{ }\]
Now taking right hand side into consideration, we get:
\[\text{right hand side = }\dfrac{x+iy}{27}\]
By separating real and imaginary terms, we get:
\[\text{right hand side = }\dfrac{x}{27}+\dfrac{iy}{27}\]
By equating left hand side and right hand side, we get:
\[\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right)\text{=}\dfrac{x}{27}\text{+}\dfrac{iy}{27}\text{ }\]
By equating real terms, we get:
\[\dfrac{x}{27}=-\dfrac{22}{3}\]
By multiplying 27 on both sides, we get:
\[\begin{align}
& \dfrac{x}{27}\times 27=\dfrac{-22}{3}\times 27 \\
& \\
\end{align}\]
By equating imaginary terms, we get:
\[\dfrac{iy}{27}=-\dfrac{107i}{27}\]
By multiplying 27 on both sides and cancelling i, we get:
\[\begin{align}
& \dfrac{iy}{27}\times 27=\dfrac{-107i}{27}\times 27 \\
& \\
\end{align}\]
We need y – x.
By above values we can say:
y – x = -107 – (-198)
= -107 + 198
= 91
\[\therefore \]The value of y – x is 91.
Option (d) is correct.
Note: Don’t take the left hand side directly, first you have to multiply 27 or else you’ll get a different answer which is also present in options. This way you may lead to the wrong answer.
Alternative method is to apply a algebraic identity:
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+3ab\left( a+b \right)+{{b}^{3}}\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
