
From a waterfall, water is pouring down at the rate of \[160{\rm{ kg}}\] per second on the blades of a turbine. If the height of the fall be \[50{\rm{ m}}\], the power delivered to the turbine is approximately equal to (Take \[g = 9.8{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\])
A. \[7.84 \times {10^4}{\rm{ W}}\]
B. \[7.84 \times {10^7}{\rm{ W}}\]
C. \[8400{\rm{ W}}\]
D. \[784{\rm{ kW}}\]
Answer
582.3k+ views
Hint: We know that the given turbine's power can be expressed as the product of the mass flow of water through its vanes, height from which water is falling, and acceleration due to gravity. We will use this expression to find the power of the turbine.
Complete step by step answer:
Given:
The mass flow rate of water on the turbine blades is \[\dot m = 160{\rm{ }}{{{\rm{kg}}} {\left/
{\vphantom {{{\rm{kg}}} {\rm{s}}}} \right.
} {\rm{s}}}\].
The height of the fall is \[h = 50{\rm{ m}}\].
The value of acceleration due to gravity is \[g = 9.8{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\].
We have to find the value of turbine power due to the flow of water through its blades.
Let us write the expression for the power of the given turbine.
\[P = \dot mgh\]
On substituting \[160{\rm{ }}{{{\rm{kg}}} {\left/
{\vphantom {{{\rm{kg}}} {\rm{s}}}} \right.
} {\rm{s}}}\] for \[\dot m\], \[9.8{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\] for g and \[50{\rm{ m}}\] for h in the above expression, we get:
$ P = \left( {160{\rm{ }}{{{\rm{kg}}} {\left/
{\vphantom {{{\rm{kg}}} {\rm{s}}}} \right.
} {\rm{s}}}} \right)\left( {9.8{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}} \right)\left( {50{\rm{ m}}} \right)\\$
$P= 78400{\rm{ }}{{{\rm{kg}} \cdot {{\rm{m}}^2}} {\left/
{\vphantom {{{\rm{kg}} \cdot {{\rm{m}}^2}} {{{\rm{s}}^3}}}} \right.
} {{{\rm{s}}^3}}} $
We can rewrite the unit expression in terms of Joule per second.
$P = 78400{\rm{ }}{{{\rm{kg}} \cdot {{\rm{m}}^2}} {\left/
{\vphantom {{{\rm{kg}} \cdot {{\rm{m}}^2}} {{{\rm{s}}^3}}}} \right.
} {{{\rm{s}}^3}}} \times \left( {\dfrac{{\rm{J}}}{{{{{\rm{kg}} \cdot {{\rm{m}}^2}} {\left/
{\vphantom {{{\rm{kg}} \cdot {{\rm{m}}^2}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}} \right)\\ $
$P = 78400{\rm{ }}{{\rm{J}} {\left/
{\vphantom {{\rm{J}} {\rm{s}}}} \right.
} {\rm{s}}}
$
We know that Joule per second gives us the power in terms of Watt so we can write the above expression as below:
$P = 78400{\rm{ }}{{\rm{J}} {\left/
{\vphantom {{\rm{J}} {\rm{s}}}} \right.
} {\rm{s}}} \times \left( {\dfrac{{\rm{W}}}{{{{\rm{J}} {\left/
{\vphantom {{\rm{J}} {\rm{s}}}} \right.
} {\rm{s}}}}}} \right)\\ $
$P= 78400{\rm{ W}} $
We can again convert the above expression so that it can match with any of the given options.
$P = \dfrac{{78400}}{{10000}}{\rm{ }} \times {\rm{1}}{{\rm{0}}^4}{\rm{ W}}\\ $
$P= 7.84 \times {\rm{1}}{{\rm{0}}^4}{\rm{ W}} $
Therefore, we can say that the power obtained from the given turbine due to the flow of water over its vanes is \[7.84 \times {\rm{1}}{{\rm{0}}^4}{\rm{ W}}\]
So, the correct answer is “Option A”.
Note:
We can note that Newton-metre gives us the unit of power, Joule. It would be an added advantage if we can remember the relationship between various power units to solve similar kinds of problems.
Complete step by step answer:
Given:
The mass flow rate of water on the turbine blades is \[\dot m = 160{\rm{ }}{{{\rm{kg}}} {\left/
{\vphantom {{{\rm{kg}}} {\rm{s}}}} \right.
} {\rm{s}}}\].
The height of the fall is \[h = 50{\rm{ m}}\].
The value of acceleration due to gravity is \[g = 9.8{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\].
We have to find the value of turbine power due to the flow of water through its blades.
Let us write the expression for the power of the given turbine.
\[P = \dot mgh\]
On substituting \[160{\rm{ }}{{{\rm{kg}}} {\left/
{\vphantom {{{\rm{kg}}} {\rm{s}}}} \right.
} {\rm{s}}}\] for \[\dot m\], \[9.8{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\] for g and \[50{\rm{ m}}\] for h in the above expression, we get:
$ P = \left( {160{\rm{ }}{{{\rm{kg}}} {\left/
{\vphantom {{{\rm{kg}}} {\rm{s}}}} \right.
} {\rm{s}}}} \right)\left( {9.8{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}} \right)\left( {50{\rm{ m}}} \right)\\$
$P= 78400{\rm{ }}{{{\rm{kg}} \cdot {{\rm{m}}^2}} {\left/
{\vphantom {{{\rm{kg}} \cdot {{\rm{m}}^2}} {{{\rm{s}}^3}}}} \right.
} {{{\rm{s}}^3}}} $
We can rewrite the unit expression in terms of Joule per second.
$P = 78400{\rm{ }}{{{\rm{kg}} \cdot {{\rm{m}}^2}} {\left/
{\vphantom {{{\rm{kg}} \cdot {{\rm{m}}^2}} {{{\rm{s}}^3}}}} \right.
} {{{\rm{s}}^3}}} \times \left( {\dfrac{{\rm{J}}}{{{{{\rm{kg}} \cdot {{\rm{m}}^2}} {\left/
{\vphantom {{{\rm{kg}} \cdot {{\rm{m}}^2}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}} \right)\\ $
$P = 78400{\rm{ }}{{\rm{J}} {\left/
{\vphantom {{\rm{J}} {\rm{s}}}} \right.
} {\rm{s}}}
$
We know that Joule per second gives us the power in terms of Watt so we can write the above expression as below:
$P = 78400{\rm{ }}{{\rm{J}} {\left/
{\vphantom {{\rm{J}} {\rm{s}}}} \right.
} {\rm{s}}} \times \left( {\dfrac{{\rm{W}}}{{{{\rm{J}} {\left/
{\vphantom {{\rm{J}} {\rm{s}}}} \right.
} {\rm{s}}}}}} \right)\\ $
$P= 78400{\rm{ W}} $
We can again convert the above expression so that it can match with any of the given options.
$P = \dfrac{{78400}}{{10000}}{\rm{ }} \times {\rm{1}}{{\rm{0}}^4}{\rm{ W}}\\ $
$P= 7.84 \times {\rm{1}}{{\rm{0}}^4}{\rm{ W}} $
Therefore, we can say that the power obtained from the given turbine due to the flow of water over its vanes is \[7.84 \times {\rm{1}}{{\rm{0}}^4}{\rm{ W}}\]
So, the correct answer is “Option A”.
Note:
We can note that Newton-metre gives us the unit of power, Joule. It would be an added advantage if we can remember the relationship between various power units to solve similar kinds of problems.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

