
How many four-letter words with or without meaning, can be formed out of the letters of the word ‘LOGARITHMS’, if repetition of letters is not allowed?
A) 40
B) 400
C) 5040
D) 2520
Answer
567.6k+ views
Hint: We can take the letters in the given word and count them. Then we can find the permutation of forming 4 letters words with the letters of the given words by calculating the permutation of selecting 4 objects from n objects without replacement, where n is the number of letters in the given word which is obtained by the formula, ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
Complete step by step solution:
We have the word ‘LOGARITHMS’.
We can count the letters. After counting, we can say that there are 10 letters in the given word.
$ \Rightarrow n = 10$
Now we need to form four letter words from these 10 numbers. As the words can be with or without meaning, we can take all the possible ways of arrangements.
As the repetition is not allowed, we can use the equation ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$ where n is the number of objects and r is the number of objects needed to be selected.
So, the number of four-letter words can be formed is given by,
$ \Rightarrow {}^{10}{P_4} = \dfrac{{10!}}{{\left( {10 - 4} \right)!}}$
So we have,
$ \Rightarrow {}^{10}{P_4} = \dfrac{{10!}}{{6!}}$
Using properties of factorial, we can write the numerator as,
$ \Rightarrow {}^{10}{P_4} = \dfrac{{10 \times 9 \times 8 \times 7 \times 6!}}{{6!}}$
On cancelling common terms we get,
$ \Rightarrow {}^{10}{P_4} = 10 \times 9 \times 8 \times 7$
Hence we have,
$ \Rightarrow {}^{10}{P_4} = 5040$
Therefore, the number of four-letter words that can be formed is 5040.
So the correct answer is option C.
Note: Alternate method to solve this problem is by,
We have 10 letters that have to be arranged in four places. It is given that repetition of letters is not allowed. So the letter once used cannot be used again.
So, in the $1^{\text{st}}$ place, we place any of the 10 letters. In the second place we can put any of the remaining 9 letters. In $3^{\text{rd}}$ place we can have any of the 8 letters and in the last place any of the remaining 7 letters can be used.
So, the total arrangement is given by, $10 \times 9 \times 8 \times 7 = 5040$ .
Therefore, the number of words that can be formed is 5040.
Complete step by step solution:
We have the word ‘LOGARITHMS’.
We can count the letters. After counting, we can say that there are 10 letters in the given word.
$ \Rightarrow n = 10$
Now we need to form four letter words from these 10 numbers. As the words can be with or without meaning, we can take all the possible ways of arrangements.
As the repetition is not allowed, we can use the equation ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$ where n is the number of objects and r is the number of objects needed to be selected.
So, the number of four-letter words can be formed is given by,
$ \Rightarrow {}^{10}{P_4} = \dfrac{{10!}}{{\left( {10 - 4} \right)!}}$
So we have,
$ \Rightarrow {}^{10}{P_4} = \dfrac{{10!}}{{6!}}$
Using properties of factorial, we can write the numerator as,
$ \Rightarrow {}^{10}{P_4} = \dfrac{{10 \times 9 \times 8 \times 7 \times 6!}}{{6!}}$
On cancelling common terms we get,
$ \Rightarrow {}^{10}{P_4} = 10 \times 9 \times 8 \times 7$
Hence we have,
$ \Rightarrow {}^{10}{P_4} = 5040$
Therefore, the number of four-letter words that can be formed is 5040.
So the correct answer is option C.
Note: Alternate method to solve this problem is by,
We have 10 letters that have to be arranged in four places. It is given that repetition of letters is not allowed. So the letter once used cannot be used again.
So, in the $1^{\text{st}}$ place, we place any of the 10 letters. In the second place we can put any of the remaining 9 letters. In $3^{\text{rd}}$ place we can have any of the 8 letters and in the last place any of the remaining 7 letters can be used.
So, the total arrangement is given by, $10 \times 9 \times 8 \times 7 = 5040$ .
Therefore, the number of words that can be formed is 5040.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

