
What is the formula for the speed of a pendulum at any point?
Answer
516.6k+ views
Hint: To calculate the speed of the pendulum at any point in space, we will consider the pendulum to be a simple pendulum with very small oscillations. This approximation will help us derive the formula for Force on the pendulum bob at any instant as a function of acceleration which can then be used to get the speed of the pendulum.
Complete step-by-step solution:
Let us assume that the bob of the pendulum has a mass ‘m’. The length of the string, that is, the length of the pendulum is ‘l’ and the gravitational acceleration is ‘g’. Then, for very small oscillation, we can say that:
$\Rightarrow \sin \theta \approx \theta $
Now, let us see the different types of forces acting on the pendulum bob when it is set in motion with the help of the following diagram:
Here, we can see that the perpendicular component of mg, that is, $mg\sin \theta $ is the restoring force on the pendulum.
Thus, using Newton’s second law of motion, the linear acceleration (a) of the pendulum can be written as:
$\Rightarrow a=-g\sin \theta $ [Let this expression be equation number (1)]
Also, since the bob is moving along the arc of the circle, its angular acceleration is given by:
$\Rightarrow \alpha =\dfrac{{{d}^{2}}\theta }{d{{t}^{2}}}$ [Let this expression be equation number (2)]
Which can also be written as:
$\Rightarrow \alpha =\dfrac{a}{l}$ [Let this expression be equation number (3)]
Thus, from equation number (1), (2) and (3), we have:
$\Rightarrow \dfrac{{{d}^{2}}\theta }{d{{t}^{2}}}=-\dfrac{g}{l}\sin \theta $
Using the approximation from earlier, we have:
$\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}\theta }{d{{t}^{2}}}=-\dfrac{g}{l}\theta \\
& \Rightarrow m\dfrac{{{d}^{2}}\theta }{d{{t}^{2}}}=-m\dfrac{g}{l}\theta \\
& \Rightarrow F=-kx \\
\end{align}$
Where, F is the net restoring force and ‘k’ is a constant equal to $\dfrac{mg}{l}$ .
Thus, the pendulum is exhibiting a simple harmonic motion. Thus, the speed of the pendulum can be written using the equation of speed of a particle exhibiting S.H.M. . This is done as follows:
$\Rightarrow v=A\omega \cos (\omega t+\phi )$
Where,
A is the amplitude of oscillatory motion.
‘$\omega $’ is the angular frequency of the motion which is equal to:
$\begin{align}
& \Rightarrow \omega =\sqrt{\dfrac{k}{m}} \\
& \Rightarrow \omega =\sqrt{\dfrac{\dfrac{mg}{l}}{m}} \\
& \therefore \omega =\sqrt{\dfrac{g}{l}} \\
\end{align}$
And, $\phi $ is the initial phase of the particle.
Hence, the formula for speed of the pendulum at any point comes out to be $A\omega \cos (\omega t+\phi )$.
Note: We should always know the derivation of these crucial terms such as the velocity and displacement of a particle in S.H.M. and also know the assumptions under which these formulas have been derived as changing those assumptions will give us different set of equations than desired ones.
Complete step-by-step solution:
Let us assume that the bob of the pendulum has a mass ‘m’. The length of the string, that is, the length of the pendulum is ‘l’ and the gravitational acceleration is ‘g’. Then, for very small oscillation, we can say that:
$\Rightarrow \sin \theta \approx \theta $
Now, let us see the different types of forces acting on the pendulum bob when it is set in motion with the help of the following diagram:
Here, we can see that the perpendicular component of mg, that is, $mg\sin \theta $ is the restoring force on the pendulum.
Thus, using Newton’s second law of motion, the linear acceleration (a) of the pendulum can be written as:
$\Rightarrow a=-g\sin \theta $ [Let this expression be equation number (1)]
Also, since the bob is moving along the arc of the circle, its angular acceleration is given by:
$\Rightarrow \alpha =\dfrac{{{d}^{2}}\theta }{d{{t}^{2}}}$ [Let this expression be equation number (2)]
Which can also be written as:
$\Rightarrow \alpha =\dfrac{a}{l}$ [Let this expression be equation number (3)]
Thus, from equation number (1), (2) and (3), we have:
$\Rightarrow \dfrac{{{d}^{2}}\theta }{d{{t}^{2}}}=-\dfrac{g}{l}\sin \theta $
Using the approximation from earlier, we have:
$\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}\theta }{d{{t}^{2}}}=-\dfrac{g}{l}\theta \\
& \Rightarrow m\dfrac{{{d}^{2}}\theta }{d{{t}^{2}}}=-m\dfrac{g}{l}\theta \\
& \Rightarrow F=-kx \\
\end{align}$
Where, F is the net restoring force and ‘k’ is a constant equal to $\dfrac{mg}{l}$ .
Thus, the pendulum is exhibiting a simple harmonic motion. Thus, the speed of the pendulum can be written using the equation of speed of a particle exhibiting S.H.M. . This is done as follows:
$\Rightarrow v=A\omega \cos (\omega t+\phi )$
Where,
A is the amplitude of oscillatory motion.
‘$\omega $’ is the angular frequency of the motion which is equal to:
$\begin{align}
& \Rightarrow \omega =\sqrt{\dfrac{k}{m}} \\
& \Rightarrow \omega =\sqrt{\dfrac{\dfrac{mg}{l}}{m}} \\
& \therefore \omega =\sqrt{\dfrac{g}{l}} \\
\end{align}$
And, $\phi $ is the initial phase of the particle.
Hence, the formula for speed of the pendulum at any point comes out to be $A\omega \cos (\omega t+\phi )$.
Note: We should always know the derivation of these crucial terms such as the velocity and displacement of a particle in S.H.M. and also know the assumptions under which these formulas have been derived as changing those assumptions will give us different set of equations than desired ones.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

