
For $x \in R,x \ne 0,x \ne 1,$let ${f_0}\left( x \right) = \dfrac{1}{{1 - x}}$ and ${f_{n + 1}}\left( x \right) = {f_0}\left( {{f_n}\left( x \right)} \right),n = 0,1,2,....$Then find the value of${f_{100}}\left( 3 \right) + {f_1}\left( {\dfrac{2}{3}} \right) + {f_2}\left( {\dfrac{3}{2}} \right)$ .
(A) $\dfrac{1}{3}$
(B) $\dfrac{4}{3}$
(C) $\dfrac{8}{3}$
(D) $\dfrac{5}{3}$
Answer
577.5k+ views
Hint:Use the given definition of the function to define ${f_1}\left( x \right)$ and ${f_2}\left( x \right)$. Now find the value of${f_3}\left( x \right)$ and notice that there is a pattern according to the value of $n$ in the definition of the function. The values repeat themselves for different values of $n$.
Complete step-by-step answer:
According to the given data in question the function ${f_0}\left( x \right)$ is defined as ${f_0}\left( x \right) = \dfrac{1}{{1 - x}}$ and ${f_{n + 1}}\left( x \right) = {f_0}\left( {{f_n}\left( x \right)} \right),n = 0,1,2,....$for all$x \in R,x \ne 0,x \ne 1$, i.e. .. can have any real value except $0$ and $1$.
With that information, we need to calculate the value of ${f_{100}}\left( 3 \right) + {f_1}\left( {\dfrac{2}{3}} \right) + {f_2}\left( {\dfrac{3}{2}} \right)$.
Since ${f_{n + 1}}\left( x \right) = {f_0}\left( {{f_n}\left( x \right)} \right)$ therefore for $n = 0$, we get ${f_{0 + 1}}\left( x \right) = {f_0}\left( {{f_0}\left( x \right)} \right) \Rightarrow {f_1}\left( x \right) = {f_0}\left( {{f_0}\left( x \right)} \right)$
Now we can use the given definition of ${f_0}\left( x \right)$ in the above relation:
$ \Rightarrow {f_1}\left( x \right) = {f_0}\left( {{f_0}\left( x \right)} \right) = \dfrac{1}{{1 - {f_0}\left( x \right)}} = \dfrac{1}{{1 - \dfrac{1}{{1 - x}}}}$
It can be further simplified by evaluating the fraction as:
$ \Rightarrow {f_1}\left( x \right) = \dfrac{1}{{1 - \dfrac{1}{{1 - x}}}} = \dfrac{1}{{\dfrac{{1 - x - 1}}{{1 - x}}}} = \dfrac{{1 - x}}{{ - x}} = \dfrac{{x - 1}}{x}$
Again, for $n = 1$, by the given definition of ${f_{n + 1}}\left( x \right)$ we get: ${f_2}\left( x \right) = {f_0}\left( {{f_1}\left( x \right)} \right)$ and as per the previous calculations, we can write the value of ${f_2}\left( x \right)$ as:
\[ \Rightarrow {f_2}\left( x \right) = {f_0}\left( {{f_1}\left( x \right)} \right) = {f_0}\left( {{f_0}\left( {{f_0}\left( x \right)} \right)} \right) = {f_0}\left( {\dfrac{{x - 1}}{x}} \right) = \dfrac{1}{{1 - \dfrac{{\left( {x - 1} \right)}}{x}}} = \dfrac{x}{{x - x + 1}} = \dfrac{x}{{0 + 1}} = x\]
Therefore, we get ${f_1}\left( x \right) = \dfrac{{x - 1}}{x}$ and ${f_2}\left( x \right) = x$
Similarly, for $n = 2$ we get ${f_3}\left( x \right) = {f_0}\left( {{f_2}\left( x \right)} \right) = {f_0}\left( x \right) = \dfrac{1}{{1 - x}}$
So, now let’s analyse the results we got:${f_0}\left( x \right) = \dfrac{1}{{1 - x}}$,${f_1}\left( x \right) = \dfrac{{x - 1}}{x}$,${f_2}\left( x \right) = x$,${f_3}\left( x \right)$$ = \dfrac{1}{{1 - x}}$,…….
Here we can notice the pattern in the results, therefore, according to the pattern:
Similarly,${f_4}\left( x \right) = \dfrac{{x - 1}}{x}$, then ${f_5}\left( x \right) = x$, then again ${f_6}\left( x \right) = \dfrac{1}{{1 - x}}$
With the above calculations, we can conclude that:
For values $n = 0,3,6,9,12,15.......$ ${f_n}\left( x \right) = \dfrac{1}{{1 - x}}$
For values $n = 1,4,7,10,13,16.......$ ${f_n}\left( x \right) = \dfrac{{x - 1}}{x}$
For values $n = 2,5,8,11,14,17........$ ${f_n}\left( x \right) = x$
Therefore, if the value of $n = 100 = \left( {3 \times 33} \right) + 1$$ \Rightarrow {f_{100}}\left( x \right) = \dfrac{{x - 1}}{x}$
Now we can use the values of the function ${f_{100}}\left( x \right) = \dfrac{{x - 1}}{x}$,${f_1}\left( x \right) = \dfrac{{x - 1}}{x}$and ${f_2}\left( x \right) = x$ to evaluate the value of the expression ${f_{100}}\left( 3 \right) + {f_1}\left( {\dfrac{2}{3}} \right) + {f_2}\left( {\dfrac{3}{2}} \right)$
\[ \Rightarrow {f_{100}}\left( 3 \right) + {f_1}\left( {\dfrac{2}{3}} \right) + {f_2}\left( {\dfrac{3}{2}} \right) = \left( {\dfrac{{3 - 1}}{3}} \right) + \left( {\dfrac{{\dfrac{2}{3} - 1}}{{\dfrac{2}{3}}}} \right) + \left( {\dfrac{3}{2}} \right) = \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{{ - 1}}{2}} \right) + \left( {\dfrac{3}{2}} \right) = \dfrac{2}{3} + 1 = \dfrac{5}{3}\]
Hence, the value for the given expression is $\dfrac{5}{3}$.
So, the correct answer is “Option D”.
Note:Use the brackets carefully to evaluate the function definition. Do not put the value of $x$ beyond its domain. Check for a pattern with different values of $n$ by repeating the pattern at least once.
Complete step-by-step answer:
According to the given data in question the function ${f_0}\left( x \right)$ is defined as ${f_0}\left( x \right) = \dfrac{1}{{1 - x}}$ and ${f_{n + 1}}\left( x \right) = {f_0}\left( {{f_n}\left( x \right)} \right),n = 0,1,2,....$for all$x \in R,x \ne 0,x \ne 1$, i.e. .. can have any real value except $0$ and $1$.
With that information, we need to calculate the value of ${f_{100}}\left( 3 \right) + {f_1}\left( {\dfrac{2}{3}} \right) + {f_2}\left( {\dfrac{3}{2}} \right)$.
Since ${f_{n + 1}}\left( x \right) = {f_0}\left( {{f_n}\left( x \right)} \right)$ therefore for $n = 0$, we get ${f_{0 + 1}}\left( x \right) = {f_0}\left( {{f_0}\left( x \right)} \right) \Rightarrow {f_1}\left( x \right) = {f_0}\left( {{f_0}\left( x \right)} \right)$
Now we can use the given definition of ${f_0}\left( x \right)$ in the above relation:
$ \Rightarrow {f_1}\left( x \right) = {f_0}\left( {{f_0}\left( x \right)} \right) = \dfrac{1}{{1 - {f_0}\left( x \right)}} = \dfrac{1}{{1 - \dfrac{1}{{1 - x}}}}$
It can be further simplified by evaluating the fraction as:
$ \Rightarrow {f_1}\left( x \right) = \dfrac{1}{{1 - \dfrac{1}{{1 - x}}}} = \dfrac{1}{{\dfrac{{1 - x - 1}}{{1 - x}}}} = \dfrac{{1 - x}}{{ - x}} = \dfrac{{x - 1}}{x}$
Again, for $n = 1$, by the given definition of ${f_{n + 1}}\left( x \right)$ we get: ${f_2}\left( x \right) = {f_0}\left( {{f_1}\left( x \right)} \right)$ and as per the previous calculations, we can write the value of ${f_2}\left( x \right)$ as:
\[ \Rightarrow {f_2}\left( x \right) = {f_0}\left( {{f_1}\left( x \right)} \right) = {f_0}\left( {{f_0}\left( {{f_0}\left( x \right)} \right)} \right) = {f_0}\left( {\dfrac{{x - 1}}{x}} \right) = \dfrac{1}{{1 - \dfrac{{\left( {x - 1} \right)}}{x}}} = \dfrac{x}{{x - x + 1}} = \dfrac{x}{{0 + 1}} = x\]
Therefore, we get ${f_1}\left( x \right) = \dfrac{{x - 1}}{x}$ and ${f_2}\left( x \right) = x$
Similarly, for $n = 2$ we get ${f_3}\left( x \right) = {f_0}\left( {{f_2}\left( x \right)} \right) = {f_0}\left( x \right) = \dfrac{1}{{1 - x}}$
So, now let’s analyse the results we got:${f_0}\left( x \right) = \dfrac{1}{{1 - x}}$,${f_1}\left( x \right) = \dfrac{{x - 1}}{x}$,${f_2}\left( x \right) = x$,${f_3}\left( x \right)$$ = \dfrac{1}{{1 - x}}$,…….
Here we can notice the pattern in the results, therefore, according to the pattern:
Similarly,${f_4}\left( x \right) = \dfrac{{x - 1}}{x}$, then ${f_5}\left( x \right) = x$, then again ${f_6}\left( x \right) = \dfrac{1}{{1 - x}}$
With the above calculations, we can conclude that:
For values $n = 0,3,6,9,12,15.......$ ${f_n}\left( x \right) = \dfrac{1}{{1 - x}}$
For values $n = 1,4,7,10,13,16.......$ ${f_n}\left( x \right) = \dfrac{{x - 1}}{x}$
For values $n = 2,5,8,11,14,17........$ ${f_n}\left( x \right) = x$
Therefore, if the value of $n = 100 = \left( {3 \times 33} \right) + 1$$ \Rightarrow {f_{100}}\left( x \right) = \dfrac{{x - 1}}{x}$
Now we can use the values of the function ${f_{100}}\left( x \right) = \dfrac{{x - 1}}{x}$,${f_1}\left( x \right) = \dfrac{{x - 1}}{x}$and ${f_2}\left( x \right) = x$ to evaluate the value of the expression ${f_{100}}\left( 3 \right) + {f_1}\left( {\dfrac{2}{3}} \right) + {f_2}\left( {\dfrac{3}{2}} \right)$
\[ \Rightarrow {f_{100}}\left( 3 \right) + {f_1}\left( {\dfrac{2}{3}} \right) + {f_2}\left( {\dfrac{3}{2}} \right) = \left( {\dfrac{{3 - 1}}{3}} \right) + \left( {\dfrac{{\dfrac{2}{3} - 1}}{{\dfrac{2}{3}}}} \right) + \left( {\dfrac{3}{2}} \right) = \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{{ - 1}}{2}} \right) + \left( {\dfrac{3}{2}} \right) = \dfrac{2}{3} + 1 = \dfrac{5}{3}\]
Hence, the value for the given expression is $\dfrac{5}{3}$.
So, the correct answer is “Option D”.
Note:Use the brackets carefully to evaluate the function definition. Do not put the value of $x$ beyond its domain. Check for a pattern with different values of $n$ by repeating the pattern at least once.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

