
For $x \in R$,$x \ne 0$, $y$ is differentiable function such that $x\int\limits_1^x {y(t)dt} $$ = (x + 1)$$\int\limits_1^x {ty(t)dt} $, then $y(x)$equals:
A. $C{x^3}{e^{\dfrac{1}{x}}}$
B. $\dfrac{C}{{{x^2}}}{e^{\dfrac{{ - 1}}{x}}}$
C. $\dfrac{C}{x}{e^{\dfrac{{ - 1}}{x}}}$
D. $\dfrac{C}{{{x^3}}}{e^{\dfrac{{ - 1}}{x}}}$
Answer
511.2k+ views
Hint: In this question, we are given that $x \in R$,$x \ne 0$, $y$ is a differentiable function. Here we should take differential with respect to $x$ of
$x\int\limits_1^x {y(t)dt} $$ = (x + 1)$$\int\limits_1^x {ty(t)dt} $ and then we will find $y(x)$ by this equation.
Complete step-by-step answer:
We are given that
$x \in R$,$x \ne 0$, $y$ is differentiable function such that $x\int\limits_1^x {y(t)dt} $$ = (x + 1)$$\int\limits_1^x {ty(t)dt} $
We can also write it as
\[\]$x\int\limits_1^x {y(t)dt} $$ = x$$\int\limits_1^x {ty(t)dt} $$ + \int\limits_1^x {ty(t)dt} $$ - - - - - - (1)$
As we have to find $y(x)$ we have to proceed with (1),
Taking differential of both the sides with respect to $x$ of (1)
$\dfrac{d}{{dx}}(x\int\limits_1^x {y(t)dt)} $$ = \dfrac{d}{{dx}}x$$\int\limits_1^x {ty(t)dt} $$ + \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} $
Now using the product rule,
$\dfrac{d}{{dx}}(u.v) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}$
We get,
$\int\limits_1^x {y(t)dt.\dfrac{{dx}}{{dx}} + x\dfrac{{d\int\limits_1^x {y(t)dt} }}{{dx}} = \int\limits_1^x {ty(t)dt\dfrac{{dx}}{{dx}}} } + \dfrac{d}{{dx}}$$\int\limits_1^x {ty(t)dt} $$.x$$ + \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} $
Now we know that $\dfrac{{dx}}{{dx}} = 1,\dfrac{{d\int {f(y)} }}{{dx}} = f(y)$
$\int\limits_1^x {y(t)dt + x(y(x) - y(1)) = \int\limits_1^x {ty(t)dt} } $$ + x(xy(x) - 1.y(1))$$ + (xy(x) - 1.y(1))$
$\int\limits_1^x {y(t)dt + xy(x) - xy(1) = \int\limits_1^x {ty(t)dt} } $$ + {x^2}y(x) - xy(1))$$ + xy(x) - 1.y(1)$
$\int\limits_1^x {y(t)dt} $$ = \int\limits_1^x {ty(t)dt} $$ + {x^2}y(x) - y(1)$$ - - - - - (2)$
Taking differential of both the sides with respect to $x$of (2)
$\dfrac{d}{{dx}}\int\limits_1^x {y(t)dt} $$ = \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} $$ + \dfrac{d}{{dx}}{x^2}y(x) - \dfrac{d}{{dx}}y(1)$
Now using the product rule again,
$\dfrac{d}{{dx}}(u.v) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}$
$\dfrac{{dc}}{{dx}} = 0$, where $c$ is any constant
We get,
$y(x) - y(1) = xy(x) - y(1) + 2xy(x)$$ + {x^2}\dfrac{d}{{dx}}y(x)$
$y(x) - 3xy(x)$$ = {x^2}\dfrac{d}{{dx}}y(x)$
$\dfrac{1}{{y(x)}}.\dfrac{d}{{dx}}y(x)$$ = \dfrac{{1 - 3x}}{{{x^2}}}$
$\dfrac{1}{{y(x)}}.dy(x)$$ = \dfrac{{1 - 3x}}{{{x^2}}}.dx$$ - - - - - (3)$
Now integrating both sides of (3), we use
$\int {\dfrac{1}{{y(x)}}.dy(x)} $$ = \int {\dfrac{1}{{{x^2}}} - \dfrac{3}{x}.dx} $
Now we know that $\ln x + {c_1} = \int {\dfrac{1}{x}.dx} $and
$\int {{x^n}.dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + {c_2}$
So, we get:
$\ln y(x) = \dfrac{{{x^{ - 1}}}}{{ - 1}} - 3\ln x + {c_2} - {c_1}$
Now putting ${c_3} = {c_2} - {c_1}$
Where ${c_3}$is the constant, we get
$\ln y(x) + 3\ln x = \dfrac{{{x^{ - 1}}}}{{ - 1}} + \ln {c_3}$
We know that
$a\ln b = \ln {b^a}$
So, we get
$\ln y(x) + \ln {x^3} = \dfrac{{{x^{ - 1}}}}{{ - 1}} + \ln {c_3}$
Now taking exponential on both sides we get,
${e^{\ln y(x){x^3}}} = {e^{ - \dfrac{1}{x} + \ln {c_3}}}$
Now using ${e^{\ln a}} = a$ so we get,
$y(x){x^3} = {e^{\dfrac{{ - 1}}{x} + \ln {c_3}}}$
Now using ${e^{a + b}} = {e^a}{e^b}$
$y(x){x^3} = {e^{ - \dfrac{1}{x}}} + {e^{\ln {c_3}}}$
Now again using ${e^{\ln a}} = a$, we get,
$y(x){x^3} = {e^{\dfrac{{ - 1}}{x}}}.{c_3}$
$y(x) = \dfrac{1}{{{x^3}}}{e^{\dfrac{{ - 1}}{x}}}.{c_3}$
Now we can put $c = {c_3}$ as it is just a constant
$y(x) = \dfrac{c}{{{x^3}}}{e^{\dfrac{{ - 1}}{x}}}$
So, the correct answer is “Option D”.
Note: In this question, we are writing
$\dfrac{d}{{dx}}\int\limits_1^x {y(t)dt} $$ = y(x) - y(1).................(A)$
because we know that:
$\int\limits_a^b {f(x)dx} = \left[ {g(x)} \right]_a^b = g(b) - g(a)$
Where
$\int {f(x)dx} = \left[ {g(x)} \right]$
And proof for (A) is,
Let $\int\limits_1^x {y(t)dt} = z(t)$
Now, we know that if $\int {f(x)dx} = g(x)$, then
$\dfrac{{dg(x)}}{{dx}} = f(x)$
So, using this formula, we can say that
$
\dfrac{d}{{dx}}\int\limits_1^x {y(t)dt} = \dfrac{{dz(x)}}{{dx}} - \dfrac{{dz(1)}}{{dx}} \\
{\text{ }} = y(x) - y(1) \\
$
Hence this is proof for (A) which is used in the above question and is an important part to solve the question.
$x\int\limits_1^x {y(t)dt} $$ = (x + 1)$$\int\limits_1^x {ty(t)dt} $ and then we will find $y(x)$ by this equation.
Complete step-by-step answer:
We are given that
$x \in R$,$x \ne 0$, $y$ is differentiable function such that $x\int\limits_1^x {y(t)dt} $$ = (x + 1)$$\int\limits_1^x {ty(t)dt} $
We can also write it as
\[\]$x\int\limits_1^x {y(t)dt} $$ = x$$\int\limits_1^x {ty(t)dt} $$ + \int\limits_1^x {ty(t)dt} $$ - - - - - - (1)$
As we have to find $y(x)$ we have to proceed with (1),
Taking differential of both the sides with respect to $x$ of (1)
$\dfrac{d}{{dx}}(x\int\limits_1^x {y(t)dt)} $$ = \dfrac{d}{{dx}}x$$\int\limits_1^x {ty(t)dt} $$ + \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} $
Now using the product rule,
$\dfrac{d}{{dx}}(u.v) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}$
We get,
$\int\limits_1^x {y(t)dt.\dfrac{{dx}}{{dx}} + x\dfrac{{d\int\limits_1^x {y(t)dt} }}{{dx}} = \int\limits_1^x {ty(t)dt\dfrac{{dx}}{{dx}}} } + \dfrac{d}{{dx}}$$\int\limits_1^x {ty(t)dt} $$.x$$ + \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} $
Now we know that $\dfrac{{dx}}{{dx}} = 1,\dfrac{{d\int {f(y)} }}{{dx}} = f(y)$
$\int\limits_1^x {y(t)dt + x(y(x) - y(1)) = \int\limits_1^x {ty(t)dt} } $$ + x(xy(x) - 1.y(1))$$ + (xy(x) - 1.y(1))$
$\int\limits_1^x {y(t)dt + xy(x) - xy(1) = \int\limits_1^x {ty(t)dt} } $$ + {x^2}y(x) - xy(1))$$ + xy(x) - 1.y(1)$
$\int\limits_1^x {y(t)dt} $$ = \int\limits_1^x {ty(t)dt} $$ + {x^2}y(x) - y(1)$$ - - - - - (2)$
Taking differential of both the sides with respect to $x$of (2)
$\dfrac{d}{{dx}}\int\limits_1^x {y(t)dt} $$ = \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} $$ + \dfrac{d}{{dx}}{x^2}y(x) - \dfrac{d}{{dx}}y(1)$
Now using the product rule again,
$\dfrac{d}{{dx}}(u.v) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}$
$\dfrac{{dc}}{{dx}} = 0$, where $c$ is any constant
We get,
$y(x) - y(1) = xy(x) - y(1) + 2xy(x)$$ + {x^2}\dfrac{d}{{dx}}y(x)$
$y(x) - 3xy(x)$$ = {x^2}\dfrac{d}{{dx}}y(x)$
$\dfrac{1}{{y(x)}}.\dfrac{d}{{dx}}y(x)$$ = \dfrac{{1 - 3x}}{{{x^2}}}$
$\dfrac{1}{{y(x)}}.dy(x)$$ = \dfrac{{1 - 3x}}{{{x^2}}}.dx$$ - - - - - (3)$
Now integrating both sides of (3), we use
$\int {\dfrac{1}{{y(x)}}.dy(x)} $$ = \int {\dfrac{1}{{{x^2}}} - \dfrac{3}{x}.dx} $
Now we know that $\ln x + {c_1} = \int {\dfrac{1}{x}.dx} $and
$\int {{x^n}.dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + {c_2}$
So, we get:
$\ln y(x) = \dfrac{{{x^{ - 1}}}}{{ - 1}} - 3\ln x + {c_2} - {c_1}$
Now putting ${c_3} = {c_2} - {c_1}$
Where ${c_3}$is the constant, we get
$\ln y(x) + 3\ln x = \dfrac{{{x^{ - 1}}}}{{ - 1}} + \ln {c_3}$
We know that
$a\ln b = \ln {b^a}$
So, we get
$\ln y(x) + \ln {x^3} = \dfrac{{{x^{ - 1}}}}{{ - 1}} + \ln {c_3}$
Now taking exponential on both sides we get,
${e^{\ln y(x){x^3}}} = {e^{ - \dfrac{1}{x} + \ln {c_3}}}$
Now using ${e^{\ln a}} = a$ so we get,
$y(x){x^3} = {e^{\dfrac{{ - 1}}{x} + \ln {c_3}}}$
Now using ${e^{a + b}} = {e^a}{e^b}$
$y(x){x^3} = {e^{ - \dfrac{1}{x}}} + {e^{\ln {c_3}}}$
Now again using ${e^{\ln a}} = a$, we get,
$y(x){x^3} = {e^{\dfrac{{ - 1}}{x}}}.{c_3}$
$y(x) = \dfrac{1}{{{x^3}}}{e^{\dfrac{{ - 1}}{x}}}.{c_3}$
Now we can put $c = {c_3}$ as it is just a constant
$y(x) = \dfrac{c}{{{x^3}}}{e^{\dfrac{{ - 1}}{x}}}$
So, the correct answer is “Option D”.
Note: In this question, we are writing
$\dfrac{d}{{dx}}\int\limits_1^x {y(t)dt} $$ = y(x) - y(1).................(A)$
because we know that:
$\int\limits_a^b {f(x)dx} = \left[ {g(x)} \right]_a^b = g(b) - g(a)$
Where
$\int {f(x)dx} = \left[ {g(x)} \right]$
And proof for (A) is,
Let $\int\limits_1^x {y(t)dt} = z(t)$
Now, we know that if $\int {f(x)dx} = g(x)$, then
$\dfrac{{dg(x)}}{{dx}} = f(x)$
So, using this formula, we can say that
$
\dfrac{d}{{dx}}\int\limits_1^x {y(t)dt} = \dfrac{{dz(x)}}{{dx}} - \dfrac{{dz(1)}}{{dx}} \\
{\text{ }} = y(x) - y(1) \\
$
Hence this is proof for (A) which is used in the above question and is an important part to solve the question.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Where can free central placentation be seen class 11 biology CBSE

What is the molecular weight of NaOH class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE
