
For x > 1, if ${{(2x)}^{2y}}=4{{e}^{(2x-2y)}}$, then ${{(1+{{\log }_{e}}2x)}^{2}}\dfrac{dy}{dx}$ is equal to
$\begin{align}
& \text{a) lo}{{\text{g}}_{e}}2x \\
& \text{b) }\dfrac{x{{\log }_{e}}2x+{{\log }_{e}}2}{x} \\
& \text{c)}\text{ xlo}{{\text{g}}_{e}}2x \\
& \text{d) }\dfrac{x{{\log }_{e}}2x-{{\log }_{e}}2}{x} \\
\end{align}$
Answer
578.4k+ views
Hint: Now we are given with the equation ${{(2x)}^{2y}}=4{{e}^{(2x-2y)}}$ we will simplify the equation by taking log on both side and uspe properties of log to further simplify. Then we will write it in terms of y and we will differentiate the equation to find $\dfrac{dy}{dx}$. To find $\dfrac{dy}{dx}$ we will use the formula $\dfrac{f}{g}=\dfrac{gf'-fg'}{{{g}^{2}}}$ and use the fact that differentiation of f(g(x)) = $f'(g(x)).g'(x)$ . Further we will rearrange terms to find the value of ${{(1+{{\log }_{e}}2x)}^{2}}\dfrac{dy}{dx}$
Complete step-by-step answer:
Now we are given with the equation that ${{(2x)}^{2y}}=4{{e}^{(2x-2y)}}$
Taking log on both the sides we get
$\log {{(2x)}^{2y}}=\log 4{{e}^{(2x-2y)}}$
Now we know that $\log ab=\log a+\log b$ using this we get
$\log {{(2x)}^{2y}}=\log 4+\log {{e}^{(2x-2y)}}$
$\log {{(2x)}^{2y}}=\log {{2}^{2}}+\log {{e}^{(2x-2y)}}$
Now we know a property of log according to which $\log {{a}^{n}}=n\log a$
Hence using this we get
$2y\log \left( 2x \right)=\left( 2x-2y \right)\log e+2\log 2$
Now since the base of log given is e ${{\log }_{e}}e=1$ hence we get
$2y\log \left( 2x \right)=\left( 2x-2y \right)+2\log 2$
Now dividing the whole equation by 2 we get
$y\log \left( 2x \right)=x-y+\log 2$
Now taking y on RHS we get
$\begin{align}
& y\log \left( 2x \right)+y=x+\log 2 \\
& \Rightarrow y(1+\log 2x)=(x+\log 2) \\
& \Rightarrow y=\dfrac{x+\log 2}{1+\log 2x} \\
\end{align}$
Now differentiating on both sides we get.
We know that differentiation of $\dfrac{f}{g}=\dfrac{gf'-fg'}{{{g}^{2}}}$. Using this we get
\[\dfrac{dy}{dx}=\dfrac{(1+\log 2x)(x+\log 2)'-(x+\log 2)\left( (1+\log 2x) \right)'}{{{\left( 1+\log 2x \right)}^{2}}}.................(1)\]
Now differentiation of (x + log 2) = 1 since log 2 is a constant
Substituting this in equation (1) we get
\[\dfrac{dy}{dx}=\dfrac{(1+\log 2x)-(x+\log 2)\left( (1+\log 2x) \right)'}{{{\left( 1+\log 2x \right)}^{2}}}.......................(2)\]
Now let us differentiate \[\left( {{(1+\log 2x)}^{2}} \right)\]
Now we know that differentiation of f(g(x)) is given by $f'(g(x)).g'(x)$ using this we get
\[\begin{align}
& \left( 1+\log 2x \right)'=.\left( \dfrac{1}{2x}.2 \right) \\
& \left( 1+\log 2x \right)'=\dfrac{1}{x} \\
\end{align}\]
Now substituting the value of \[\left( {{(1+\log 2x)}^{2}} \right)'\] in equation (2) we get
\[\dfrac{dy}{dx}=\dfrac{(1+\log 2x)-\dfrac{(x+\log 2)}{x}}{{{\left( 1+\log 2x \right)}^{2}}}\]
Now multiplying the whole equation by ${{\left( 1+\log 2x \right)}^{2}}$ we get
\[\begin{align}
& \dfrac{dy}{dx}{{\left( 1+\log 2x \right)}^{2}}=(1+\log 2x)-\dfrac{(x+\log 2)}{x} \\
& =\dfrac{x+x\log 2x-x+\log 2}{x} \\
& =\dfrac{x\log 2x+\log 2}{x} \\
\end{align}\]
Hence the value of ${{\left( 1+\log 2x \right)}^{2}}$= \[\dfrac{x\log 2x+\log 2}{x}\]
So, the correct answer is “Option (b)”.
Note: While using the formula for differentiation of $\dfrac{f}{g}$note that the the differentiation is $=\dfrac{gf'-fg'}{{{g}^{2}}}$ not to be confused with $\dfrac{gf'+fg'}{{{g}^{2}}}$ or $\dfrac{fg'-gf'}{{{g}^{2}}}$.
Complete step-by-step answer:
Now we are given with the equation that ${{(2x)}^{2y}}=4{{e}^{(2x-2y)}}$
Taking log on both the sides we get
$\log {{(2x)}^{2y}}=\log 4{{e}^{(2x-2y)}}$
Now we know that $\log ab=\log a+\log b$ using this we get
$\log {{(2x)}^{2y}}=\log 4+\log {{e}^{(2x-2y)}}$
$\log {{(2x)}^{2y}}=\log {{2}^{2}}+\log {{e}^{(2x-2y)}}$
Now we know a property of log according to which $\log {{a}^{n}}=n\log a$
Hence using this we get
$2y\log \left( 2x \right)=\left( 2x-2y \right)\log e+2\log 2$
Now since the base of log given is e ${{\log }_{e}}e=1$ hence we get
$2y\log \left( 2x \right)=\left( 2x-2y \right)+2\log 2$
Now dividing the whole equation by 2 we get
$y\log \left( 2x \right)=x-y+\log 2$
Now taking y on RHS we get
$\begin{align}
& y\log \left( 2x \right)+y=x+\log 2 \\
& \Rightarrow y(1+\log 2x)=(x+\log 2) \\
& \Rightarrow y=\dfrac{x+\log 2}{1+\log 2x} \\
\end{align}$
Now differentiating on both sides we get.
We know that differentiation of $\dfrac{f}{g}=\dfrac{gf'-fg'}{{{g}^{2}}}$. Using this we get
\[\dfrac{dy}{dx}=\dfrac{(1+\log 2x)(x+\log 2)'-(x+\log 2)\left( (1+\log 2x) \right)'}{{{\left( 1+\log 2x \right)}^{2}}}.................(1)\]
Now differentiation of (x + log 2) = 1 since log 2 is a constant
Substituting this in equation (1) we get
\[\dfrac{dy}{dx}=\dfrac{(1+\log 2x)-(x+\log 2)\left( (1+\log 2x) \right)'}{{{\left( 1+\log 2x \right)}^{2}}}.......................(2)\]
Now let us differentiate \[\left( {{(1+\log 2x)}^{2}} \right)\]
Now we know that differentiation of f(g(x)) is given by $f'(g(x)).g'(x)$ using this we get
\[\begin{align}
& \left( 1+\log 2x \right)'=.\left( \dfrac{1}{2x}.2 \right) \\
& \left( 1+\log 2x \right)'=\dfrac{1}{x} \\
\end{align}\]
Now substituting the value of \[\left( {{(1+\log 2x)}^{2}} \right)'\] in equation (2) we get
\[\dfrac{dy}{dx}=\dfrac{(1+\log 2x)-\dfrac{(x+\log 2)}{x}}{{{\left( 1+\log 2x \right)}^{2}}}\]
Now multiplying the whole equation by ${{\left( 1+\log 2x \right)}^{2}}$ we get
\[\begin{align}
& \dfrac{dy}{dx}{{\left( 1+\log 2x \right)}^{2}}=(1+\log 2x)-\dfrac{(x+\log 2)}{x} \\
& =\dfrac{x+x\log 2x-x+\log 2}{x} \\
& =\dfrac{x\log 2x+\log 2}{x} \\
\end{align}\]
Hence the value of ${{\left( 1+\log 2x \right)}^{2}}$= \[\dfrac{x\log 2x+\log 2}{x}\]
So, the correct answer is “Option (b)”.
Note: While using the formula for differentiation of $\dfrac{f}{g}$note that the the differentiation is $=\dfrac{gf'-fg'}{{{g}^{2}}}$ not to be confused with $\dfrac{gf'+fg'}{{{g}^{2}}}$ or $\dfrac{fg'-gf'}{{{g}^{2}}}$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

