
For what value of $\lambda $, the vector $i - \lambda + 2k$ and $8i + 6j - k$ are at right angles?
Answer
563.1k+ views
Hint: According to the question the angle between two vectors is ${90^ \circ }$. Therefore, apply the Dot product formula for the angle between two Vectors.
$\overrightarrow a \cdot \overrightarrow b = \left| a \right|\left| b \right|\cos \theta $
Since $\theta = {90^ \circ }$ and $\cos {90^ \circ } = 0$
$\therefore \overrightarrow a \cdot \overrightarrow b = \left| a \right|\left| b \right|\cos {90^ \circ }$
$\therefore \overrightarrow a \cdot \overrightarrow b = 0$
By solving the equation $\overrightarrow a \cdot \overrightarrow b = 0$ we get the value of $\lambda $.
Complete step-by-step answer:
Consider the two vectors $i - \lambda + 2k$ and $8i + 6j - k$. They are at right angles, so $\theta = {90^ \circ }$.
If the two vectors are assumed as $\overrightarrow a $ and $\overrightarrow b $ then the dot product denoted as $\overrightarrow a \cdot \overrightarrow b $ . Suppose these two vectors are separated by angle θ.
The dot product of two product is given as
$\overrightarrow a \cdot \overrightarrow b = \left| a \right|\left| b \right|\cos \theta $
Substitute $\theta = {90^ \circ }$ and $\cos {90^ \circ } = 0$.
$\therefore \overrightarrow a \cdot \overrightarrow b = \left| a \right|\left| b \right|\cos {90^ \circ }$
$\therefore \overrightarrow a \cdot \overrightarrow b = 0$
Suppose $\overrightarrow a = i - \lambda + 2k$ and $\overrightarrow b = 8i + 6j - k$ then evaluate $\overrightarrow a \cdot \overrightarrow b = 0$.
$ \Rightarrow (i - \lambda + 2k) \cdot (8i + 6j - k) = 0$
Since $i \cdot i = 1$, $j \cdot j = 1$ and $k \cdot k = 1$ we have,
$ \Rightarrow 1 \times 8 - \lambda \times 6 + 2 \times ( - 1) = 0$
$ \Rightarrow 8 - 6\lambda - 2 = 0$
$ \Rightarrow 6 - 6\lambda = 0$
$ \Rightarrow 6\lambda = 6$
$ \Rightarrow \lambda = 1$
Final Answer: The vector $i - \lambda + 2k$ and $8i + 6j - k$ are at right angles for $\lambda = 1$.
Note:
Remember the difference between dot product and cross product.
The dot product of two vectors $A$ and $B$ is represented as: $A \cdot B = \left| A \right|\left| B \right|\cos \theta $, where $\left| A \right|$ and $\left| B \right|$ are the magnitude of the vectors.
The cross product of two vectors $A$ and $B$ is represented as: $A \times B = \left| A \right|\left| B \right|\sin \theta $, where$\left| A \right|$ and $\left| B \right|$ are the magnitude of the vectors.
Magnitude of the vector$A = ai + bj + ck$ :
$\left| A \right| = \sqrt {{a^2} + {b^2} + {c^2}} $
$\overrightarrow a \cdot \overrightarrow b = \left| a \right|\left| b \right|\cos \theta $
Since $\theta = {90^ \circ }$ and $\cos {90^ \circ } = 0$
$\therefore \overrightarrow a \cdot \overrightarrow b = \left| a \right|\left| b \right|\cos {90^ \circ }$
$\therefore \overrightarrow a \cdot \overrightarrow b = 0$
By solving the equation $\overrightarrow a \cdot \overrightarrow b = 0$ we get the value of $\lambda $.
Complete step-by-step answer:
Consider the two vectors $i - \lambda + 2k$ and $8i + 6j - k$. They are at right angles, so $\theta = {90^ \circ }$.
If the two vectors are assumed as $\overrightarrow a $ and $\overrightarrow b $ then the dot product denoted as $\overrightarrow a \cdot \overrightarrow b $ . Suppose these two vectors are separated by angle θ.
The dot product of two product is given as
$\overrightarrow a \cdot \overrightarrow b = \left| a \right|\left| b \right|\cos \theta $
Substitute $\theta = {90^ \circ }$ and $\cos {90^ \circ } = 0$.
$\therefore \overrightarrow a \cdot \overrightarrow b = \left| a \right|\left| b \right|\cos {90^ \circ }$
$\therefore \overrightarrow a \cdot \overrightarrow b = 0$
Suppose $\overrightarrow a = i - \lambda + 2k$ and $\overrightarrow b = 8i + 6j - k$ then evaluate $\overrightarrow a \cdot \overrightarrow b = 0$.
$ \Rightarrow (i - \lambda + 2k) \cdot (8i + 6j - k) = 0$
Since $i \cdot i = 1$, $j \cdot j = 1$ and $k \cdot k = 1$ we have,
$ \Rightarrow 1 \times 8 - \lambda \times 6 + 2 \times ( - 1) = 0$
$ \Rightarrow 8 - 6\lambda - 2 = 0$
$ \Rightarrow 6 - 6\lambda = 0$
$ \Rightarrow 6\lambda = 6$
$ \Rightarrow \lambda = 1$
Final Answer: The vector $i - \lambda + 2k$ and $8i + 6j - k$ are at right angles for $\lambda = 1$.
Note:
Remember the difference between dot product and cross product.
The dot product of two vectors $A$ and $B$ is represented as: $A \cdot B = \left| A \right|\left| B \right|\cos \theta $, where $\left| A \right|$ and $\left| B \right|$ are the magnitude of the vectors.
The cross product of two vectors $A$ and $B$ is represented as: $A \times B = \left| A \right|\left| B \right|\sin \theta $, where$\left| A \right|$ and $\left| B \right|$ are the magnitude of the vectors.
Magnitude of the vector$A = ai + bj + ck$ :
$\left| A \right| = \sqrt {{a^2} + {b^2} + {c^2}} $
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

