
For the strong electrolytes ${{NaOH,NaCl}}$ and ${{BaC}}{{{l}}_2}$, the molar ionic conductances at infinite dilution are $248 \times {10^{ - 4}},126.5 \times {10^{ - 4}}$ and $280.0 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}$ respectively. Calculate ${\Lambda _{{m}}}^ \circ $ for ${{Ba}}{\left( {{{OH}}} \right)_2}$.
Answer
552.6k+ views
Hint:Electrolytes are the substances whose solution in water conducts electric current. Conduction takes place by the movement of ions. Kohlrausch’s law is based on the limiting molar conductivity of an electrolyte.
Complete step by step answer:
Molar conductivity is the conductive power of all the ions produced by one mole of an electrolyte in the given solution. Kohlrausch’s law gives the empirical relationship between molar conductivity and concentration of strong electrolytes. Limiting molar conductivity is due to the migration of cations in one direction and anions in the other under very dilute conditions. The Kohlrausch’s law is expressed in the formula given below:
${\Lambda _{{m}}}^ \circ = {\upsilon _ + }{\Lambda _ + }^ \circ + {\upsilon _ - }{\Lambda _ - }^ \circ $, where ${\Lambda _ + }^ \circ ,{\Lambda _ - }^ \circ $ are the ionic conductances of the cations and anions at infinite dilution.
It is given that molar ionic conductance of ${{NaOH}}$, ${\Lambda _{{m}}}^ \circ \left( {{{NaOH}}} \right) = 248 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}$
Molar ionic conductance of ${{NaCl}}$, ${\Lambda _{{m}}}^ \circ \left( {{{NaCl}}} \right) = 126.5 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}$
Molar ionic conductance of ${{BaC}}{{{l}}_2}$, ${\Lambda _{{m}}}^ \circ \left( {{{BaC}}{{{l}}_2}} \right) = 280.0 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}$
Molar ionic conductance of ${{NaOH}}$ can be expressed as ${\Lambda _{{m}}}^ \circ \left( {{{NaOH}}} \right) = {\Lambda _{{m}}}^ \circ \left( {{{N}}{{{a}}^ + }} \right) + {\Lambda _{{m}}}^ \circ \left( {{{O}}{{{H}}^ - }} \right)$
Molar ionic conductance of ${{NaCl}}$ can be expressed as ${\Lambda _{{m}}}^ \circ \left( {{{NaCl}}} \right) = {\Lambda _{{m}}}^ \circ \left( {{{N}}{{{a}}^ + }} \right) + {\Lambda _{{m}}}^ \circ \left( {{{C}}{{{l}}^ - }} \right)$
Molar ionic conductance of ${{BaC}}{{{l}}_2}$ can be expressed as ${\Lambda _{{m}}}^ \circ \left( {{{BaC}}{{{l}}_2}} \right) = {\Lambda _{{m}}}^ \circ \left( {{{B}}{{{a}}^{2 + }}} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{C}}{{{l}}^ - }} \right)$
The reaction with respect to the formation of ${{Ba}}{\left( {{{OH}}} \right)_2}$ is given below:
${{BaC}}{{{l}}_2} + 2{{NaOH}} \to {{Ba}}{\left( {{{OH}}} \right)_2} + 2{{NaCl}}$
Thus molar ionic conductance of ${{Ba}}{\left( {{{OH}}} \right)_2}$ can be expressed as:
${\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = {\Lambda _{{m}}}^ \circ \left( {{{BaC}}{{{l}}_2}} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{NaOH}}} \right) - 2{\Lambda _{{m}}}^ \circ \left( {{{NaCl}}} \right)$
\[{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = \left[ {{\Lambda _{{m}}}^ \circ \left( {{{B}}{{{a}}^ + }} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{C}}{{{l}}^ - }} \right)} \right] + \left[ {2{\Lambda _{{m}}}^ \circ \left( {{{N}}{{{a}}^ + }} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{O}}{{{H}}^ - }} \right)} \right] - \left[ {2{\Lambda _{{m}}}^ \circ \left( {{{N}}{{{a}}^ + }} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{C}}{{{l}}^ - }} \right)} \right]\]
On simplification, we get
\[{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = \left[ {{\Lambda _{{m}}}^ \circ \left( {{{B}}{{{a}}^ + }} \right)} \right] + \left[ {2{\Lambda _{{m}}}^ \circ \left( {{{O}}{{{H}}^ - }} \right)} \right]\]
Substituting the values, we get
\[{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = 280.0 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} + 2 \times 248 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} - \left( {2 \times 126.5{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}} \right)\]
Solving,
\[{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = 776.0 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} - {{253}}{{.0}} \times {{1}}{{{0}}^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} = 523 \times {{1}}{{{0}}^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}\]
Molar conductance of ${{Ba}}{\left( {{{OH}}} \right)_2}$, \[{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = 523 \times {{1}}{{{0}}^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}\]
Note: Specific conductance is the ability of an electrolyte solution to conduct electricity. On dilution, the specific conductivity decreases. Equivalent and molar conductance increase with dilution and reaches a maximum value. The conductance of all electrolytes increases with temperature. Kohlrausch’s law can be applied for calculating the degree of dissociation of a weak electrolyte. It can also be used for finding the equivalent conductivity of weak electrolytes.
Complete step by step answer:
Molar conductivity is the conductive power of all the ions produced by one mole of an electrolyte in the given solution. Kohlrausch’s law gives the empirical relationship between molar conductivity and concentration of strong electrolytes. Limiting molar conductivity is due to the migration of cations in one direction and anions in the other under very dilute conditions. The Kohlrausch’s law is expressed in the formula given below:
${\Lambda _{{m}}}^ \circ = {\upsilon _ + }{\Lambda _ + }^ \circ + {\upsilon _ - }{\Lambda _ - }^ \circ $, where ${\Lambda _ + }^ \circ ,{\Lambda _ - }^ \circ $ are the ionic conductances of the cations and anions at infinite dilution.
It is given that molar ionic conductance of ${{NaOH}}$, ${\Lambda _{{m}}}^ \circ \left( {{{NaOH}}} \right) = 248 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}$
Molar ionic conductance of ${{NaCl}}$, ${\Lambda _{{m}}}^ \circ \left( {{{NaCl}}} \right) = 126.5 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}$
Molar ionic conductance of ${{BaC}}{{{l}}_2}$, ${\Lambda _{{m}}}^ \circ \left( {{{BaC}}{{{l}}_2}} \right) = 280.0 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}$
Molar ionic conductance of ${{NaOH}}$ can be expressed as ${\Lambda _{{m}}}^ \circ \left( {{{NaOH}}} \right) = {\Lambda _{{m}}}^ \circ \left( {{{N}}{{{a}}^ + }} \right) + {\Lambda _{{m}}}^ \circ \left( {{{O}}{{{H}}^ - }} \right)$
Molar ionic conductance of ${{NaCl}}$ can be expressed as ${\Lambda _{{m}}}^ \circ \left( {{{NaCl}}} \right) = {\Lambda _{{m}}}^ \circ \left( {{{N}}{{{a}}^ + }} \right) + {\Lambda _{{m}}}^ \circ \left( {{{C}}{{{l}}^ - }} \right)$
Molar ionic conductance of ${{BaC}}{{{l}}_2}$ can be expressed as ${\Lambda _{{m}}}^ \circ \left( {{{BaC}}{{{l}}_2}} \right) = {\Lambda _{{m}}}^ \circ \left( {{{B}}{{{a}}^{2 + }}} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{C}}{{{l}}^ - }} \right)$
The reaction with respect to the formation of ${{Ba}}{\left( {{{OH}}} \right)_2}$ is given below:
${{BaC}}{{{l}}_2} + 2{{NaOH}} \to {{Ba}}{\left( {{{OH}}} \right)_2} + 2{{NaCl}}$
Thus molar ionic conductance of ${{Ba}}{\left( {{{OH}}} \right)_2}$ can be expressed as:
${\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = {\Lambda _{{m}}}^ \circ \left( {{{BaC}}{{{l}}_2}} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{NaOH}}} \right) - 2{\Lambda _{{m}}}^ \circ \left( {{{NaCl}}} \right)$
\[{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = \left[ {{\Lambda _{{m}}}^ \circ \left( {{{B}}{{{a}}^ + }} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{C}}{{{l}}^ - }} \right)} \right] + \left[ {2{\Lambda _{{m}}}^ \circ \left( {{{N}}{{{a}}^ + }} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{O}}{{{H}}^ - }} \right)} \right] - \left[ {2{\Lambda _{{m}}}^ \circ \left( {{{N}}{{{a}}^ + }} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{C}}{{{l}}^ - }} \right)} \right]\]
On simplification, we get
\[{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = \left[ {{\Lambda _{{m}}}^ \circ \left( {{{B}}{{{a}}^ + }} \right)} \right] + \left[ {2{\Lambda _{{m}}}^ \circ \left( {{{O}}{{{H}}^ - }} \right)} \right]\]
Substituting the values, we get
\[{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = 280.0 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} + 2 \times 248 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} - \left( {2 \times 126.5{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}} \right)\]
Solving,
\[{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = 776.0 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} - {{253}}{{.0}} \times {{1}}{{{0}}^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} = 523 \times {{1}}{{{0}}^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}\]
Molar conductance of ${{Ba}}{\left( {{{OH}}} \right)_2}$, \[{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = 523 \times {{1}}{{{0}}^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}\]
Note: Specific conductance is the ability of an electrolyte solution to conduct electricity. On dilution, the specific conductivity decreases. Equivalent and molar conductance increase with dilution and reaches a maximum value. The conductance of all electrolytes increases with temperature. Kohlrausch’s law can be applied for calculating the degree of dissociation of a weak electrolyte. It can also be used for finding the equivalent conductivity of weak electrolytes.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

