
For the reaction: ${\text{2A + B}} \to {{\text{A}}_{\text{2}}}{\text{B}}$ the ${\text{rate = }}k{\text{[A][B}}{{\text{]}}^{\text{2}}}$with\[k = 2.0 \times {10^{ - 6}}{\text{mo}}{{\text{l}}^{{\text{ - 2}}}}{{\text{L}}^{\text{2}}}{{\text{s}}^{{\text{ - 1}}}}\]. Calculate the initial rate of the reaction when ${\text{[A] = 0}}{\text{.1 mol }}{{\text{L}}^{{\text{ - 1}}}}$ , ${\text{[B] = 0}}{\text{.2 mol }}{{\text{L}}^{{\text{ - 1}}}}$. Calculate the rate of reaction after ${\text{[A]}}$ is reduced to ${\text{0}}{\text{.06 mol }}{{\text{L}}^{{\text{ - 1}}}}$.
Answer
567.6k+ views
Hint: The rate of reaction is the change in concentration of reactant or product in unit time. Change in concentration of reactant affects the rate of reaction. Reaction rate has units of concentration per unit time.
Complete step by step answer:
The reaction given to us is
${\text{2A + B}} \to {{\text{A}}_{\text{2}}}{\text{B}}$
The rate law equation given to us for the above reaction is
${\text{rate = }}k{\text{[A][B}}{{\text{]}}^{\text{2}}}$
Where,
$k$= rate constant = \[2.0 \times {10^{ - 6}}{\text{mo}}{{\text{l}}^{{\text{ - 2}}}}{{\text{L}}^{\text{2}}}{{\text{s}}^{{\text{ - 1}}}}\]
${\text{[A]}}$= concentration of reactant A
${\text{[B]}}$= concentration of reactant B
Now, calculate the initial rate of the reaction when ${\text{[A] = 0}}{\text{.1 mol }}{{\text{L}}^{{\text{ - 1}}}}$and ${\text{[B] = 0}}{\text{.2 mol }}{{\text{L}}^{{\text{ - 1}}}}$
${\text{rate = }}2.0 \times {10^{ - 6}}{\text{mo}}{{\text{l}}^{{\text{ - 2}}}}{{\text{L}}^{\text{2}}}{{\text{s}}^{{\text{ - 1}}}}{\text{( 0}}{\text{.1 mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{)(0}}{\text{.2 mol }}{{\text{L}}^{{\text{ - 1}}}}{)^{\text{2}}}$
${\text{rate = 8}}{\text{.0}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{{\text{s}}^{{\text{ - 1}}}}$
Thus, the rate of reaction when ${\text{[A] = 0}}{\text{.1 mol }}{{\text{L}}^{{\text{ - 1}}}}$and ${\text{[B] = 0}}{\text{.2 mol }}{{\text{L}}^{{\text{ - 1}}}}$ is ${\text{ 8}}{\text{.0}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{{\text{s}}^{{\text{ - 1}}}}$
Now, calculate the rate of reaction after ${\text{[A]}}$ is reduced to ${\text{0}}{\text{.06 mol}}{{\text{L}}^{{\text{ - 1}}}}$
${\text{[A]}}$ is reduced to ${\text{0}}{\text{.06 mol}}{{\text{L}}^{{\text{ - 1}}}}$ from ${\text{0}}{\text{.1 mol }}{{\text{L}}^{{\text{ - 1}}}}$
So, ${\text{reacted [A] = 0}}{\text{.1 mol }}{{\text{L}}^{{\text{ - 1}}}} - {\text{0}}{\text{.06 mol }}{{\text{L}}^{{\text{ - 1}}}} = 0.04{\text{ mol }}{{\text{L}}^{{\text{ - 1}}}}$
The mole ratio of reactant A and B is 2:1
Hence, ${\text{reacted [B] = 0}}{\text{.04 mol }}{{\text{L}}^{{\text{ - 1}}}} \times \dfrac{1}{2} = 0.02{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}$
Thus, ${\text{unreacted [B] = 0}}{\text{.2 mol }}{{\text{L}}^{{\text{ - 1}}}} - {\text{0}}{\text{.02 mol }}{{\text{L}}^{{\text{ - 1}}}} = 0.18{\text{ mol }}{{\text{L}}^{{\text{ - 1}}}}$
${\text{rate = }}2.0 \times {10^{ - 6}}{\text{mo}}{{\text{l}}^{{\text{ - 2}}}}{{\text{L}}^{\text{2}}}{{\text{s}}^{{\text{ - 1}}}}{\text{( 0}}{\text{.06mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{)(0}}{\text{.18 mol }}{{\text{L}}^{{\text{ - 1}}}}{)^{\text{2}}}$
${\text{rate = 3}}{\text{.9}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{ }}{{\text{s}}^{{\text{ - 1}}}}$
Thus, the rate of reaction when ${\text{[A]}}$ is reduced to ${\text{0}}{\text{.06 mol}}{{\text{L}}^{{\text{ - 1}}}}$ is ${\text{3}}{\text{.9}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{{\text{s}}^{{\text{ - 1}}}}$.
Note:
The mathematical relation between the rate of reaction and the concentration of reaction component is known as the rate law expression. The rate constant value for the given reaction will be always constant. It is independent of change in concentration of reaction components. The rate of reaction is directly proportional to the concentration of reactants in the rate law expression. The higher the concentration of reactants in the rate law expression higher is the rate of reaction. A decrease in the concentration of reactants in the rate law expression decreases the rate of reaction.
Complete step by step answer:
The reaction given to us is
${\text{2A + B}} \to {{\text{A}}_{\text{2}}}{\text{B}}$
The rate law equation given to us for the above reaction is
${\text{rate = }}k{\text{[A][B}}{{\text{]}}^{\text{2}}}$
Where,
$k$= rate constant = \[2.0 \times {10^{ - 6}}{\text{mo}}{{\text{l}}^{{\text{ - 2}}}}{{\text{L}}^{\text{2}}}{{\text{s}}^{{\text{ - 1}}}}\]
${\text{[A]}}$= concentration of reactant A
${\text{[B]}}$= concentration of reactant B
Now, calculate the initial rate of the reaction when ${\text{[A] = 0}}{\text{.1 mol }}{{\text{L}}^{{\text{ - 1}}}}$and ${\text{[B] = 0}}{\text{.2 mol }}{{\text{L}}^{{\text{ - 1}}}}$
${\text{rate = }}2.0 \times {10^{ - 6}}{\text{mo}}{{\text{l}}^{{\text{ - 2}}}}{{\text{L}}^{\text{2}}}{{\text{s}}^{{\text{ - 1}}}}{\text{( 0}}{\text{.1 mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{)(0}}{\text{.2 mol }}{{\text{L}}^{{\text{ - 1}}}}{)^{\text{2}}}$
${\text{rate = 8}}{\text{.0}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{{\text{s}}^{{\text{ - 1}}}}$
Thus, the rate of reaction when ${\text{[A] = 0}}{\text{.1 mol }}{{\text{L}}^{{\text{ - 1}}}}$and ${\text{[B] = 0}}{\text{.2 mol }}{{\text{L}}^{{\text{ - 1}}}}$ is ${\text{ 8}}{\text{.0}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{{\text{s}}^{{\text{ - 1}}}}$
Now, calculate the rate of reaction after ${\text{[A]}}$ is reduced to ${\text{0}}{\text{.06 mol}}{{\text{L}}^{{\text{ - 1}}}}$
${\text{[A]}}$ is reduced to ${\text{0}}{\text{.06 mol}}{{\text{L}}^{{\text{ - 1}}}}$ from ${\text{0}}{\text{.1 mol }}{{\text{L}}^{{\text{ - 1}}}}$
So, ${\text{reacted [A] = 0}}{\text{.1 mol }}{{\text{L}}^{{\text{ - 1}}}} - {\text{0}}{\text{.06 mol }}{{\text{L}}^{{\text{ - 1}}}} = 0.04{\text{ mol }}{{\text{L}}^{{\text{ - 1}}}}$
The mole ratio of reactant A and B is 2:1
Hence, ${\text{reacted [B] = 0}}{\text{.04 mol }}{{\text{L}}^{{\text{ - 1}}}} \times \dfrac{1}{2} = 0.02{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}$
Thus, ${\text{unreacted [B] = 0}}{\text{.2 mol }}{{\text{L}}^{{\text{ - 1}}}} - {\text{0}}{\text{.02 mol }}{{\text{L}}^{{\text{ - 1}}}} = 0.18{\text{ mol }}{{\text{L}}^{{\text{ - 1}}}}$
${\text{rate = }}2.0 \times {10^{ - 6}}{\text{mo}}{{\text{l}}^{{\text{ - 2}}}}{{\text{L}}^{\text{2}}}{{\text{s}}^{{\text{ - 1}}}}{\text{( 0}}{\text{.06mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{)(0}}{\text{.18 mol }}{{\text{L}}^{{\text{ - 1}}}}{)^{\text{2}}}$
${\text{rate = 3}}{\text{.9}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{ }}{{\text{s}}^{{\text{ - 1}}}}$
Thus, the rate of reaction when ${\text{[A]}}$ is reduced to ${\text{0}}{\text{.06 mol}}{{\text{L}}^{{\text{ - 1}}}}$ is ${\text{3}}{\text{.9}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{{\text{s}}^{{\text{ - 1}}}}$.
Note:
The mathematical relation between the rate of reaction and the concentration of reaction component is known as the rate law expression. The rate constant value for the given reaction will be always constant. It is independent of change in concentration of reaction components. The rate of reaction is directly proportional to the concentration of reactants in the rate law expression. The higher the concentration of reactants in the rate law expression higher is the rate of reaction. A decrease in the concentration of reactants in the rate law expression decreases the rate of reaction.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

