
For the principal values, evaluate \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\].
Answer
482.1k+ views
Hint: To solve the question given above, first we will draw the rough graphs of \[y={{\tan }^{-1}}\left( x \right)\] and \[y={{\cos }^{-1}}\left( x \right)\] and we will determine the nature of these graphs. Then we will find the value of \[{{\tan }^{-1}}\left( -1 \right)\] in terms of \[{{\tan }^{-1}}\left( 1 \right)\]. And the values of \[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] in terms of \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]. After that, we will find the value of \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] by putting the respective values.
Complete step-by-step answer:
Before solving the question, we must know what is the nature of \[{{\tan }^{-1}}\left( x \right)\] and \[{{\cos }^{-1}}\left( x \right)\]. For determining the nature of these inverse trigonometric functions, we will draw their respective graphs. The graph of \[{{\tan }^{-1}}x\] is:
From the above graphs, we can see that the function \[{{\tan }^{-1}}\left( x \right)\] is an odd function. If a function \[f\left( x \right)\] is an odd function then we have the following relation:
So, \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\]
Now, we will draw the graph of \[{{\cos }^{-1}}\left( x \right)\]:
We can see from the above graph that \[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\].
Now, we will find the value of \[{{\tan }^{-1}}\left( -1 \right)\]. We know that,
We have shown above that \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\] so using this relation in solving \[{{\tan }^{-1}}\left( -1 \right)\] we get,
\[{{\tan }^{-1}}\left( -1 \right)=-{{\tan }^{-1}}\left( 1 \right)\]…………. Eq. (1)
We know that, the principal value for ${{\tan }^{-1}}\left( 1 \right)$ is equal to:
$\dfrac{\pi }{4}$
So, substituting this principal value in eq. (1) we get,
\[{{\tan }^{-1}}\left( -1 \right)=-\dfrac{\pi }{4}\]……… Eq. (2)
Now, we will find the value of \[{{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)\]. We have shown above the following relation:
\[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\] so using this relation in \[{{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)\] we get,
\[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]……… Eq. (3)
We know that the principal value for:
${{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}$
On putting the value of \[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] in eq. (3), we will get:
\[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -\dfrac{\pi }{4}\]
\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{3\pi }{4}\] ……… Eq. (4)
Now, we will add equations (2) and (4). After doing this, we will get:
\[\begin{align}
& {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{-\pi }{4}+\dfrac{3\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2} \\
\end{align}\]
Note: The above question can be solved in an alternate way as shown: We know that \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\]\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}\]. Now, we can also say that, \[{{\cot }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}\]. Now, \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( 1 \right)\]. Now, we will subtract \[\pi \] on both sides. Thus we will get:
\[\begin{align}
& {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)-\pi ={{\cot }^{-1}}\left( 1 \right)-\pi \\
& \Rightarrow \pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\pi -{{\cot }^{-1}}\left( 1 \right) \\
& \Rightarrow {{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( -1 \right) \\
\end{align}\]
Now the value of \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] = \[{{\tan }^{-1}}\left( -1 \right)+{{\cot }^{-1}}\left( -1 \right)\]. Now we will apply the identity: \[{{\cot }^{-1}}\left( -1 \right)+{{\tan }^{-1}}\left( -1 \right)=\dfrac{\pi }{2}\]. So, we will get, \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2}\].
Complete step-by-step answer:
Before solving the question, we must know what is the nature of \[{{\tan }^{-1}}\left( x \right)\] and \[{{\cos }^{-1}}\left( x \right)\]. For determining the nature of these inverse trigonometric functions, we will draw their respective graphs. The graph of \[{{\tan }^{-1}}x\] is:

From the above graphs, we can see that the function \[{{\tan }^{-1}}\left( x \right)\] is an odd function. If a function \[f\left( x \right)\] is an odd function then we have the following relation:
So, \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\]
Now, we will draw the graph of \[{{\cos }^{-1}}\left( x \right)\]:

We can see from the above graph that \[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\].
Now, we will find the value of \[{{\tan }^{-1}}\left( -1 \right)\]. We know that,
We have shown above that \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\] so using this relation in solving \[{{\tan }^{-1}}\left( -1 \right)\] we get,
\[{{\tan }^{-1}}\left( -1 \right)=-{{\tan }^{-1}}\left( 1 \right)\]…………. Eq. (1)
We know that, the principal value for ${{\tan }^{-1}}\left( 1 \right)$ is equal to:
$\dfrac{\pi }{4}$
So, substituting this principal value in eq. (1) we get,
\[{{\tan }^{-1}}\left( -1 \right)=-\dfrac{\pi }{4}\]……… Eq. (2)
Now, we will find the value of \[{{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)\]. We have shown above the following relation:
\[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\] so using this relation in \[{{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)\] we get,
\[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]……… Eq. (3)
We know that the principal value for:
${{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}$
On putting the value of \[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] in eq. (3), we will get:
\[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -\dfrac{\pi }{4}\]
\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{3\pi }{4}\] ……… Eq. (4)
Now, we will add equations (2) and (4). After doing this, we will get:
\[\begin{align}
& {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{-\pi }{4}+\dfrac{3\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2} \\
\end{align}\]
Note: The above question can be solved in an alternate way as shown: We know that \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\]\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}\]. Now, we can also say that, \[{{\cot }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}\]. Now, \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( 1 \right)\]. Now, we will subtract \[\pi \] on both sides. Thus we will get:
\[\begin{align}
& {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)-\pi ={{\cot }^{-1}}\left( 1 \right)-\pi \\
& \Rightarrow \pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\pi -{{\cot }^{-1}}\left( 1 \right) \\
& \Rightarrow {{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( -1 \right) \\
\end{align}\]
Now the value of \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] = \[{{\tan }^{-1}}\left( -1 \right)+{{\cot }^{-1}}\left( -1 \right)\]. Now we will apply the identity: \[{{\cot }^{-1}}\left( -1 \right)+{{\tan }^{-1}}\left( -1 \right)=\dfrac{\pi }{2}\]. So, we will get, \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2}\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
What is the modal class for the following table given class 11 maths CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE

Number of oneone functions from A to B where nA 4 and class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE
