
For the principal values, evaluate \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\].
Answer
580.5k+ views
Hint: To solve the question given above, first we will draw the rough graphs of \[y={{\tan }^{-1}}\left( x \right)\] and \[y={{\cos }^{-1}}\left( x \right)\] and we will determine the nature of these graphs. Then we will find the value of \[{{\tan }^{-1}}\left( -1 \right)\] in terms of \[{{\tan }^{-1}}\left( 1 \right)\]. And the values of \[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] in terms of \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]. After that, we will find the value of \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] by putting the respective values.
Complete step-by-step answer:
Before solving the question, we must know what is the nature of \[{{\tan }^{-1}}\left( x \right)\] and \[{{\cos }^{-1}}\left( x \right)\]. For determining the nature of these inverse trigonometric functions, we will draw their respective graphs. The graph of \[{{\tan }^{-1}}x\] is:
From the above graphs, we can see that the function \[{{\tan }^{-1}}\left( x \right)\] is an odd function. If a function \[f\left( x \right)\] is an odd function then we have the following relation:
So, \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\]
Now, we will draw the graph of \[{{\cos }^{-1}}\left( x \right)\]:
We can see from the above graph that \[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\].
Now, we will find the value of \[{{\tan }^{-1}}\left( -1 \right)\]. We know that,
We have shown above that \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\] so using this relation in solving \[{{\tan }^{-1}}\left( -1 \right)\] we get,
\[{{\tan }^{-1}}\left( -1 \right)=-{{\tan }^{-1}}\left( 1 \right)\]…………. Eq. (1)
We know that, the principal value for ${{\tan }^{-1}}\left( 1 \right)$ is equal to:
$\dfrac{\pi }{4}$
So, substituting this principal value in eq. (1) we get,
\[{{\tan }^{-1}}\left( -1 \right)=-\dfrac{\pi }{4}\]……… Eq. (2)
Now, we will find the value of \[{{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)\]. We have shown above the following relation:
\[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\] so using this relation in \[{{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)\] we get,
\[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]……… Eq. (3)
We know that the principal value for:
${{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}$
On putting the value of \[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] in eq. (3), we will get:
\[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -\dfrac{\pi }{4}\]
\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{3\pi }{4}\] ……… Eq. (4)
Now, we will add equations (2) and (4). After doing this, we will get:
\[\begin{align}
& {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{-\pi }{4}+\dfrac{3\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2} \\
\end{align}\]
Note: The above question can be solved in an alternate way as shown: We know that \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\]\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}\]. Now, we can also say that, \[{{\cot }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}\]. Now, \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( 1 \right)\]. Now, we will subtract \[\pi \] on both sides. Thus we will get:
\[\begin{align}
& {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)-\pi ={{\cot }^{-1}}\left( 1 \right)-\pi \\
& \Rightarrow \pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\pi -{{\cot }^{-1}}\left( 1 \right) \\
& \Rightarrow {{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( -1 \right) \\
\end{align}\]
Now the value of \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] = \[{{\tan }^{-1}}\left( -1 \right)+{{\cot }^{-1}}\left( -1 \right)\]. Now we will apply the identity: \[{{\cot }^{-1}}\left( -1 \right)+{{\tan }^{-1}}\left( -1 \right)=\dfrac{\pi }{2}\]. So, we will get, \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2}\].
Complete step-by-step answer:
Before solving the question, we must know what is the nature of \[{{\tan }^{-1}}\left( x \right)\] and \[{{\cos }^{-1}}\left( x \right)\]. For determining the nature of these inverse trigonometric functions, we will draw their respective graphs. The graph of \[{{\tan }^{-1}}x\] is:
From the above graphs, we can see that the function \[{{\tan }^{-1}}\left( x \right)\] is an odd function. If a function \[f\left( x \right)\] is an odd function then we have the following relation:
So, \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\]
Now, we will draw the graph of \[{{\cos }^{-1}}\left( x \right)\]:
We can see from the above graph that \[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\].
Now, we will find the value of \[{{\tan }^{-1}}\left( -1 \right)\]. We know that,
We have shown above that \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\] so using this relation in solving \[{{\tan }^{-1}}\left( -1 \right)\] we get,
\[{{\tan }^{-1}}\left( -1 \right)=-{{\tan }^{-1}}\left( 1 \right)\]…………. Eq. (1)
We know that, the principal value for ${{\tan }^{-1}}\left( 1 \right)$ is equal to:
$\dfrac{\pi }{4}$
So, substituting this principal value in eq. (1) we get,
\[{{\tan }^{-1}}\left( -1 \right)=-\dfrac{\pi }{4}\]……… Eq. (2)
Now, we will find the value of \[{{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)\]. We have shown above the following relation:
\[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\] so using this relation in \[{{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)\] we get,
\[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]……… Eq. (3)
We know that the principal value for:
${{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}$
On putting the value of \[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] in eq. (3), we will get:
\[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -\dfrac{\pi }{4}\]
\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{3\pi }{4}\] ……… Eq. (4)
Now, we will add equations (2) and (4). After doing this, we will get:
\[\begin{align}
& {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{-\pi }{4}+\dfrac{3\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2} \\
\end{align}\]
Note: The above question can be solved in an alternate way as shown: We know that \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\]\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}\]. Now, we can also say that, \[{{\cot }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}\]. Now, \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( 1 \right)\]. Now, we will subtract \[\pi \] on both sides. Thus we will get:
\[\begin{align}
& {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)-\pi ={{\cot }^{-1}}\left( 1 \right)-\pi \\
& \Rightarrow \pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\pi -{{\cot }^{-1}}\left( 1 \right) \\
& \Rightarrow {{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( -1 \right) \\
\end{align}\]
Now the value of \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] = \[{{\tan }^{-1}}\left( -1 \right)+{{\cot }^{-1}}\left( -1 \right)\]. Now we will apply the identity: \[{{\cot }^{-1}}\left( -1 \right)+{{\tan }^{-1}}\left( -1 \right)=\dfrac{\pi }{2}\]. So, we will get, \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2}\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

