
For the principal values, evaluate \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\].
Answer
564k+ views
Hint: To solve the question given above, first we will draw the rough graphs of \[y={{\tan }^{-1}}\left( x \right)\] and \[y={{\cos }^{-1}}\left( x \right)\] and we will determine the nature of these graphs. Then we will find the value of \[{{\tan }^{-1}}\left( -1 \right)\] in terms of \[{{\tan }^{-1}}\left( 1 \right)\]. And the values of \[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] in terms of \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]. After that, we will find the value of \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] by putting the respective values.
Complete step-by-step answer:
Before solving the question, we must know what is the nature of \[{{\tan }^{-1}}\left( x \right)\] and \[{{\cos }^{-1}}\left( x \right)\]. For determining the nature of these inverse trigonometric functions, we will draw their respective graphs. The graph of \[{{\tan }^{-1}}x\] is:
From the above graphs, we can see that the function \[{{\tan }^{-1}}\left( x \right)\] is an odd function. If a function \[f\left( x \right)\] is an odd function then we have the following relation:
So, \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\]
Now, we will draw the graph of \[{{\cos }^{-1}}\left( x \right)\]:
We can see from the above graph that \[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\].
Now, we will find the value of \[{{\tan }^{-1}}\left( -1 \right)\]. We know that,
We have shown above that \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\] so using this relation in solving \[{{\tan }^{-1}}\left( -1 \right)\] we get,
\[{{\tan }^{-1}}\left( -1 \right)=-{{\tan }^{-1}}\left( 1 \right)\]…………. Eq. (1)
We know that, the principal value for ${{\tan }^{-1}}\left( 1 \right)$ is equal to:
$\dfrac{\pi }{4}$
So, substituting this principal value in eq. (1) we get,
\[{{\tan }^{-1}}\left( -1 \right)=-\dfrac{\pi }{4}\]……… Eq. (2)
Now, we will find the value of \[{{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)\]. We have shown above the following relation:
\[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\] so using this relation in \[{{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)\] we get,
\[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]……… Eq. (3)
We know that the principal value for:
${{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}$
On putting the value of \[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] in eq. (3), we will get:
\[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -\dfrac{\pi }{4}\]
\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{3\pi }{4}\] ……… Eq. (4)
Now, we will add equations (2) and (4). After doing this, we will get:
\[\begin{align}
& {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{-\pi }{4}+\dfrac{3\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2} \\
\end{align}\]
Note: The above question can be solved in an alternate way as shown: We know that \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\]\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}\]. Now, we can also say that, \[{{\cot }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}\]. Now, \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( 1 \right)\]. Now, we will subtract \[\pi \] on both sides. Thus we will get:
\[\begin{align}
& {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)-\pi ={{\cot }^{-1}}\left( 1 \right)-\pi \\
& \Rightarrow \pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\pi -{{\cot }^{-1}}\left( 1 \right) \\
& \Rightarrow {{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( -1 \right) \\
\end{align}\]
Now the value of \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] = \[{{\tan }^{-1}}\left( -1 \right)+{{\cot }^{-1}}\left( -1 \right)\]. Now we will apply the identity: \[{{\cot }^{-1}}\left( -1 \right)+{{\tan }^{-1}}\left( -1 \right)=\dfrac{\pi }{2}\]. So, we will get, \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2}\].
Complete step-by-step answer:
Before solving the question, we must know what is the nature of \[{{\tan }^{-1}}\left( x \right)\] and \[{{\cos }^{-1}}\left( x \right)\]. For determining the nature of these inverse trigonometric functions, we will draw their respective graphs. The graph of \[{{\tan }^{-1}}x\] is:
From the above graphs, we can see that the function \[{{\tan }^{-1}}\left( x \right)\] is an odd function. If a function \[f\left( x \right)\] is an odd function then we have the following relation:
So, \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\]
Now, we will draw the graph of \[{{\cos }^{-1}}\left( x \right)\]:
We can see from the above graph that \[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\].
Now, we will find the value of \[{{\tan }^{-1}}\left( -1 \right)\]. We know that,
We have shown above that \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\] so using this relation in solving \[{{\tan }^{-1}}\left( -1 \right)\] we get,
\[{{\tan }^{-1}}\left( -1 \right)=-{{\tan }^{-1}}\left( 1 \right)\]…………. Eq. (1)
We know that, the principal value for ${{\tan }^{-1}}\left( 1 \right)$ is equal to:
$\dfrac{\pi }{4}$
So, substituting this principal value in eq. (1) we get,
\[{{\tan }^{-1}}\left( -1 \right)=-\dfrac{\pi }{4}\]……… Eq. (2)
Now, we will find the value of \[{{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)\]. We have shown above the following relation:
\[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\] so using this relation in \[{{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)\] we get,
\[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]……… Eq. (3)
We know that the principal value for:
${{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}$
On putting the value of \[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] in eq. (3), we will get:
\[{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\pi -\dfrac{\pi }{4}\]
\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{3\pi }{4}\] ……… Eq. (4)
Now, we will add equations (2) and (4). After doing this, we will get:
\[\begin{align}
& {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{-\pi }{4}+\dfrac{3\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2} \\
\end{align}\]
Note: The above question can be solved in an alternate way as shown: We know that \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\]\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}\]. Now, we can also say that, \[{{\cot }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}\]. Now, \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( 1 \right)\]. Now, we will subtract \[\pi \] on both sides. Thus we will get:
\[\begin{align}
& {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)-\pi ={{\cot }^{-1}}\left( 1 \right)-\pi \\
& \Rightarrow \pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\pi -{{\cot }^{-1}}\left( 1 \right) \\
& \Rightarrow {{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)={{\cot }^{-1}}\left( -1 \right) \\
\end{align}\]
Now the value of \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)\] = \[{{\tan }^{-1}}\left( -1 \right)+{{\cot }^{-1}}\left( -1 \right)\]. Now we will apply the identity: \[{{\cot }^{-1}}\left( -1 \right)+{{\tan }^{-1}}\left( -1 \right)=\dfrac{\pi }{2}\]. So, we will get, \[{{\tan }^{-1}}\left( -1 \right)+{{\cos }^{-1}}\left( \dfrac{-1}{\sqrt{2}} \right)=\dfrac{\pi }{2}\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

